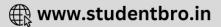
Grdinary Thinking


Objective Questions

Hydrogen

1.	Which is used hydrogen generato	rs	[CPMT 1999]
	(a) NaH	(b)	HI
	(c) S_6H_3	(d)	None of these
2.	Metal hydride on treatment with	wate	er gives
			[Bihar CEE 1995]
	(a) H_2O_2	(b)	H_2O
	(c) Acid	(d)	Hydrogen
3.	Hydrogen burns in air with a		[RPET 2003]
	(a) Light bluish flame	• •	Yellow flame
	(c) Green flame	(d)	
4.	Which pair does not show hydrog	gen is	•
	(a) Orthe budge and and some b		[UPSEAT 2003]
	(a) Ortho hydrogen and para hy(b) Protium and deuterium	/arog	gen
	(c) Deuterium and tritium		
	(d) Tritium and protium		
5.	Which is distilled first		[Pb. PMT 2002]
J.	(a) Liquid CO_2	(h)	Liquid N_2
			. 2
	(c) Liquid O_2	(d)	Liquid H ₂
6.	On reaction with Mg, very dilute	nitrio	
			[CPMT 2003]
	(a) NH_3	(b)	Nitrous oxide
	(c) Nitric oxide	(d)	Hydrogen

Get More Learning Materials Here : 📕

7.	Among the following, ide both oxidising and reducin	ntify the compound which cannot act as g agents [AMU 2002]		(a) Adsorbed hydrogen(b) Occluded hydrogen(c) Reactive hydrogen(d) Atomic hydrogen
	(a) H_2O_2	(b) <i>H</i> ₂	23.	Which is poorest reducing agent (a) Nascent hydrogen
	(c) SO_2	(d) <i>Cl</i> ₂		(b) Atomic hydrogen
3.	Which of the following rea	ction produces hydrogen		(c) Dihydrogen
		[A11MS 2002]		(d) All have same reducing strength
	(a) $Mg + H_2O$	(b) $BaO_2 + HCl$	24.	The sum of protons, electrons and neutrons in the heaviest isotope of hydrogen is
	(c) $H_2S_4O_8 + H_2O$	(d) $Na_2O_2 + 2HCl$		(a) 6 (b) 5
).	Hydrogen resembles in ma	ny of its properties		(c) 4 (d) 3
	()	[MH CET 2001]	25.	Number of nucleons in D_2 molecule is
	(a) Halogen	(b) Alkali metals		(a) 1 (b) 2 (d) 4
_	(c) Both (a) and (b)	(d) None of these	26.	(c) 3 (d) 4 An ionic compound is dissolved simultaneously in heavy water and
0.	Ortho and para hydrogen		20.	simple water. Its solubility is
	(a) Proton spin	(b) Electron spin		(a) Larger in heavy water (b) Smaller in heavy water
	(c) Nuclear charge	(d) Nuclear reaction		(c) Solubility is same in both (d) Smaller in simple water
Ι.		nineral acids on metals can give [Kerala (Med.) 2002]	27.	Ortho-hydrogen and para-hydrogen resembles in which of the following property
	(a) Monohydrogen	(b) Tritium		(a) Thermal conductivity (b) Magnetic properties
_	(c) Dihydrogen	(d) Trihydrogen		(c) Chemical properties (d) Heat capacity
2.	Hydrogen from <i>HCl</i> can be		28.	The difference between heat of adsorption of ortho and para hydrogen is
	(a) <i>Mg</i> (c) <i>P</i>	(b) <i>Cu</i> (d) <i>Pt</i> .		(a) 0.4 <i>kJ mol</i> (b) 0.8 <i>kJ mol</i>
~		adsorb largest volume of hydrogen gas		(c) Zero (d) None of these
3.			29.	Hydrogen ion H^- is isoelectronic with
	(a) Finely divided platinu(c) Colloidal palladium	(d) Colloidal platinum	-2-	(a) <i>Li</i> (b) <i>He</i>
				(c) H^+ (d) Li^-
4.	The nuclei of tritium (H^3)) atom would contain neutrons	30.	Hydrogen can be fused to form helium at [AFMC 2005]
	(a) 1	(b) 2	•••	(a) High temperature and high pressure
	(c) 3	(d) 4		(b) High temperature and low pressure
5.	The colour of hydrogen is	[MP PET 2004]		(c) Low temperature and high pressure
	(a) Black	(b) Yellow		(d) Low temperature and low pressure
6.		(d) Colourless n temperature is a mixture of	31.	Hydrogen can be prepared by mixing steam, and water gas at $500^{\circ}C$ in the presence of Fe_3O_4 and Cr_2O_3 . This process is called
	(a) 75% of <i>o</i> -Hydrogen +			(a) Nelson process (b) Serpeck's process
	(b) 25% of o -Hydrogen +			(c) Bosch process (d) Parke's process
	(c) 50% of o -Hydrogen +	- , , , ,	32.	Which of the following metal do not liberate hydrogen from dilute
_	(d) 1% of <i>o</i> -Hydrogen + 9	19% of <i>p</i> -Hydrogen		hydrochloric acid
7.	Hydrogen cannot reduce			(a) Zn (b) Mg (c) Fe (d) Au
	(a) Hot <i>CuO</i>	(b) Fe_2O_3	33.	(c) <i>Fe</i> (d) <i>Au</i> An element reacts with hydrogen to form a compound <i>A</i> which or
	(c) Hot SnO_2	(d) Hot Al_2O_3	33.	treatment with water liberates hydrogen gas. The element can be
8.	Hydrogen does not combir	ne with		(a) Nitrogen (b) Chlorine
	(a) Antimony	(b) Sodium		(c) Selenium (d) Calcium
	(c) Bismuth	(d) Helium	34.	Hydrogen combines with other elements by
9.	The adsorption of hydroge	n by metals is called		(a) Losing an electron
		[EAMCET 1999; Manipal PMT 1999]		(b) Gaining an electron(c) Sharing an electron
	(a) Dehydrogenation	(b) Hydrogenation		(c) Sharing an electron(d) Losing, gaining or sharing electron
	(c) Occlusion	(d) Adsorption	35.	Which of the following explanation is best for not placing hydroger
0.	Which of the following pro	oduces hydrolith with dihydrogen		with alkali metals or halogen
	(a) Mg	(b) <i>Al</i>		(a) The ionization energy of hydrogen is high for group of alkal
	(c) Cu	(d) Ca		metals or halogen
21.	The metal which displace solution is	es hydrogen from a boiling caustic soda		(b) Hydrogen can form compounds
	(a) As	(b) <i>Zn</i>		 (c) Hydrogen is a much lighter element than the alkali metals or halogens
	(c) Mg	(d) <i>Fe</i>		(d) Hydrogen atom does not contain any neutron
	., .		-	
22.	Metals like platinum and	palladium can absorb large volumes of	36.	Which of the following terms is not correct for hydrogen

- (b) It exists both as H^+ and $H^$ in different chemical compounds
- It is the only species which has no neutrons in the nucleus (c)
- (d) Heavy water is unstable because hydrogen is substituted by its isotope deuterium
- When electric current is passed through an ionic hydride in the 37. molten state
 - (a) Hydrogen is liberated at the anode
 - (b) Hydrogen is liberated at the cathode
 - (c) No reaction takes place
- (d) Hydride ion migrates towards cathode 38.
 - Which of the halogen has maximum affinity for hydrogen
 - (b) Cl_2 (a) F_2 (d) I_2
 - (c) Br_2
- Which of the following statements is most applicable to hydrogen 39.
 - (a) It can act as a reducing agent
 - (b) It can act as an oxidising agent
 - (c) It can act both as oxidising and reducing agent
 - (d) It can neither act as oxidising nor as a reducing agent
- 40. Hydrogen is

42.

- (a) Electropositive
- (b) Electronegative
- (c) Both electropositive as well as electronegative
- (d) Neither electropositive nor electronegative 41.
 - lonization energy of hydrogen is
 - (a) Equal to that of chlorine
 - (b) Lesser than that of chlorine
 - Slightly higher than that of chlorine (c)
 - (d) Much higher than that of chlorine
 - Hydrogen acts as a reducing agent and thus resembles
 - (a) Halogen (b) Noble gas
- (c) Radioactive elements (d) Alkali metals 43.
 - Which position for hydrogen explain all its properties
 - (a) At the top of halogen
 - (b) At the top of alkali metals
 - (c) At the top of carbon family
 - (d) None of these
- Hydrogen readily combines with non-metals and thus it shows its 44. (a) Electronegativity character
 - (b) Electropositive character
 - (c) Both (a) and (b)
 - (d) None of these
- The oxidation states shown by hydrogen are 45.
 - (a) -1 only (b) Zero only
 - (c) +1, -1, 0(d) +1 only
- Hydrogen readily combines with metals and thus shows its 46.
 - (a) Electropositive character (b) Electronegative character
 - (d) None of these (c) Both (a) and (b)
- Electrolysis of fused sodium hydride liberate hydrogen at the 47.
 - (a) Anode
 - (b) Cathode
 - (c) Cathode and anode both
 - (d) None of these
- 48. Protonic acid is

49.

- (a) A compound that form solvated hydrogen ion in polar solvent
- (b) An acid which accepts the proton
- A compound that forms hydride ion in polar solvent (c)
- An acid which donates the proton (d)

Get More Learning Materials Here :

In all its properties, hydrogen resembles

- Alkali metals only (a)
- (b) Halogen only
- Both alkali metals and halogens (c)
- Neither alkali metals nor halogens (d)
- Hydrogen molecule differs from chlorine molecule in the following 50. respect
 - (a) Hydrogen molecule is non-polar but chlorine molecule is polar
 - Hydrogen molecule is polar while chlorine molecule is non-(b) polar
 - Hydrogen molecule can form intermolecular hydrogen (c) bonds but chlorine molecule does not
 - (d) Hydrogen molecule cannot participate in coordination bond formation but chlorine molecule can
- Which of the following statements concerning protium, deuterium 51. and tritium is not true
 - (a) They are isotopes of each other
 - (b) They have similar electronic configurations
 - They exist in the nature in the ratio of 1:2:3(c)
 - (d) Their mass numbers are in the ratio of 1:2:3
- When SO_3 is treated with heavy water the product is/are 52.
 - (a) Deuterium and sulphuric acid
 - Deuterium and sulphurous acid (b)
 - (c) Only deuterium
 - (d) Dideuterosulphuric acid
- Hydrogen has three isotopes, the number of possible diatomic 53. molecules will be
 - (a) 2 (b) 6 (c) 9 (d) 12
- In which of the compounds does hydrogen have an oxidation state of 54. -1
 - (a) CH_4 (b) NH_3
 - (c) HCl (d) CaH_2
- Pure hydrogen is obtained by carrying electrolysis of 55.
 - Water containing H_2SO_4 (a)
 - Water containing NaOH (b)
 - $Ba(OH)_2$ solution (c)
 - (d) KOH solution
- In Bosch's process which gas is utilised for the production of 56. hydrogen gas
 - (a) Producer gas (b) Water gas
 - (c) Coal gas (d) None of these
- 57. Deuterium differs from hydrogen in
 - (a) Chemical properties
 - Physical properties (b)
 - (c) Both physical and chemical properties
 - (d) Radioactive properties
- 58. Tritium undergoes radioactive decay giving
 - (a) α -particles (b) β -particles
 - (c) Neutrons (d) *Y*-rays
- The gas used in the hydrogenation of vegetable oils in the presence 59. of nickel as catalyst is

🕀 www.studentbro.in

(b)

(c)

(d)

60.

61.

CLICK HERE

- (a) Methane (b) Ethane
- (c) Ozone (d) Hydrogen

Endothermic change

Photochemical change

The name hydrogen was given by

Nuclear change

The conversion of atomic hydrogen into ordinary hydrogen is (a) Exothermic change

	(a) Cavendish (b) Lavoisier
	(c) Urey (d) None of these
62.	The ratio C_p / C_v for H_2 is
	(a) 1.40 (b) 1.67
	(c) 1.33 (d) None of these
63.	Triatomic hydrogen is called
	(a) Deuterium (b) Hyzone
	(c) Ortho form (d) Hydronium ion
64.	$LiAlH_4$ is obtained by reacting an excess of With an ethereal
	solution of <i>AlCl</i> ₃
	(a) <i>LiCl</i> (b) <i>LiH</i>
	(c) Li (d) LiOH
65.	Alkali metal hydrides react with water to give
	(a) Acidic solution (b) Basic solution
	(c) Neutral solution (d) Hydride ion
66.	Ionic hydrides are usually
	(a) Good electrically conductors when solid
	(b) Easily reduced
	(c) Good reducing agents
	(d) Liquid at room temperature
67.	When $NaBH_4$ is dissolved in water
	(a) It decomposes with the evolution of H_2
	(b) Na^+ and BH_4^- are formed which are stable
	(c) BH_4^- ions formed initially decompose to produce OH^- ions,
	which prevent further decomposition
	(d) NaH and B_2H_6 are produced
68.	Systematic name of H_2O (oxide of hydrogen) is
	(a) Water (b) Hydrogen oxide
	(c) Oxidane (d) None of these
69.	Group 2 hydrides with significant covalent character is/are
	(a) BeH_2 (b) MgH_2
	(c) Both (a) and (b) (d) None of these
70.	Limiting compositions of <i>F</i> block hydrides are
70.	(a) MH_2 and MH_3 (b) MH_3 and MH_5
	(c) MH_2 and MH_8 (d) MH_2 and MH_6
71.	Hydrogen directly combines with [Roorkee Entrance 1990]
	(a) Au (b) Cu
	(c) Ni (d) Ca
72.	Chemical <i>A</i> is used for water softening to remove temporary hardness. <i>A</i> reacts with sodium carbonate to generate caustic soda.
	When CO_2 is bubbled through a solution of A , it turns cloudy.
	What is the chemical formula of A
	[Pb. CET 1990; AllMS 1999]
	(a) $CaCO_3$ (b) CaO
	(c) $Ca(OH)_2$ (d) $Ca(HCO_3)_2$
73.	When same amount of zinc is treated separately with excess of sulphuric acid and excess of sodium hydroxide solution the ratio of volumes of hydrogen evolved is [CPMT 1991]
	(a) 1:1 (b) 1:2
	(c) 2:1 (d) 9:4
74.	Which one of the following substances is used in the laboratory for a fast drying of neutral gases
	[CBSE PMT 1992]
	(a) Phoenhamus penteride

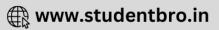
(a) Phosphorus pentoxide

(b) Active charcoal

	Water or hydr	ide of oxygen
	(c) Conc. sulphuric acid	(d) dilute <i>HCl</i>
	(a) Cold water	(b) Hot <i>NaOH</i> solution
		[] & K 2005
84.	Hydrogen is not obtained when	n zinc reacts with
	(c) <i>Si</i>	(d) <i>C</i>
	(a) <i>O</i>	(b) <i>H</i>
-0-		[Pb. CET 2004
83.	Which element forms maximum	., 2
	(c) <i>H</i> ₂	(d) CO_2
	(a) <i>SO</i> ₂	(b) NH_3
-		[Pb. CET 200;
82.	Which of the following gas is i	
	(a) <i>Da</i> (c) <i>Hg</i>	(d) <i>Sn</i>
	(a) <i>Ba</i>	(b) <i>Pb</i>
81.	Which of the following will not	t displace hydrogen [Pb. PMT 199 9
. .	(d) It has same electronegativ	
	(c) It has a very high ionizati	•
	(b) It is always collected at ca	
	(a) It can form bonds in +1 as	
		[AFMC 1997; BHU 1997
80.	Which of the following is corre	ect for hydrogen
	(c) Chalcogens	(d) Alkaline earth metals
	(a) Halogen	(b) Alkali metals
19.	it resembles	[Pb. PMT 1997] [Pb. PMT 1997]
79.	(d) None of these	to form inert gas configuration. In thi
	_	. 104011011
	(c) $H^{-}(aq) + H_2O(l) \rightarrow Nc$	_
	(b) $H^{-}(aq) + H_2O(l) \rightarrow OH$	$H^{-}(aq) + H_{2}(g)$
	(a) $H^{-}(aq) + H_2O \rightarrow H_3O$	$P^{-}(aq)$
		[CBSE PMT 1997
	hydride (<i>NaH</i>) is dissolved in v	0
, 0.	-	ving reactions will occur if sodium
78.		stronger base than its hydroxide ion
	(d) Its non-metallic character	
	(b) Its affinity for non metal(c) Its reducing character	
	(a) Its electropositive charact	er
	is	
77.		ich distinguishes it from alkali meta
	(d) 1 electron, 1 proton, 3 neu	
	(b) 1 electron, 2 protons, 1 ne(c) 1 electron, 1 proton, 2 neu	
	(a) 1 electron, 1 proton, 1 neut	
76.	The composition of tritium is	[UGET Manipal 1995
	(c) Oxygen	(d) Hydrogen
	(a) Nitrogen	(b) Helium
75.	Which is the lightest gas	[CPMT 1993
	(d) Na_3PO_4	
	(c) i inijarodo calciani cinori	

(c) Anhydrous calcium chloride

CLICK HERE

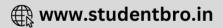

》

🕀 www.studentbro.in

1.	Synthetic detergents are more effective in hard water than soaps because [AMU 2002]		(a) Heavy water $(D_2 O)$ (b) Ordinary water $(H_2 O)$
	(a) They are highly soluble in water		(c) Zinc rod (d) Fused caustic soda
		12.	Temporary hardness of water is due to the presence of
	(b) Their ${\it Ca}^{++}$ and ${\it Mg}^{++}$ salts are water soluble		(a) Magnesium bicarbonate (b) Calcium chloride
	(c) Their Ca^{++} and Mg^{++} salts are insoluble in water		(c) Magnesium sulphate (d) Calcium carbonate
	(d) None of these	13.	Which of the following is not true
2.	<i>D</i> ₂ <i>O</i> is used more in [BHU 1997; CPMT 1997]		(a) Hardness of water depends on its behaviour towards soap
۷.			(b) The temporary hardness is due to the presence of <i>Ca</i> and <i>Mg</i> bicarbonates
	(a) Chemical industry		(c) Permanent hardness is due to the presence of soluble <i>Ca</i> and
	(b) Nuclear reactor		Mg sulphates, chlorides and nitrates
	(c) Pharmaceutical preparations		$(d) \hspace{0.1 cm} Permanent hardness can be removed by boiling the water$
	(d) Insecticide preparation	14.	The molarity of pure water at $4^{\circ}C$ is
3.	Heavy water $(D_2 O)$ is [RPET/PMT 2000; CPMT 2000]		(a) 1 <i>M</i> (b) 2.5 <i>M</i>
	(a) A product of oxygen and hydrogen		(c) $5 M$ (d) $55.5 M$
	(b) Water of mineral springs	15.	Which of the following is not a hard water
	(c) Water obtained by repeated distillation and condensation		(a) Water containing $CaCl_2$
	(d) Ordinary water containing dissolved salts heavy metals		(b) Water containing dil. <i>HCl</i>
4.	Temporary hardness may be removed from water by adding		(c) Water containing $MgSO_4$
	[Pb. PMT 2002]		(d) None of these
	(a) $CaCO_3$ (b) $Ca(OH)_2$	16.	Heavy water is used in atomic reactor as
	(c) $CaSO_4$ (d) HCl		(a) Coolant
5.	Heavy water is [AFMC 1997; UPSEAT 2003		(b) Moderator
	MH CET 2003; Pb. CET 2001]		(c) Both moderator and coolant
	(a) Water containing Fe, Cr, Mn		(d) Neither coolant nor moderator
	(b) Water at 0°C	17.	Heavy water freezes at
	(c) D_2O		(a) $0^{\circ}C$ (b) $3.8^{\circ}C$
	(d) Water obtained after a number of distillations		(c) $38^{\circ}C$ (d) $-0.38^{\circ}C$
6.	Heavy water is compound of [DPMT 2001; DCE 2002]	18.	The <i>pH</i> of D_2O and H_2O at 298 K is
	(a) Oxygen and heavier isotopes of hydrogen		(a) 7.0, 7.0 (b) 7.35, 7.0
	(b) Hydrogen and heavier isotopes of oxygen		(c) 7.0, 6.85 (d) 6.85, 7.35
	(c) Heavier isotopes of oxygen and hydrogen	19.	Which of the following is not true
	(d) None of these		(a) Ordinary water is electrolysed more rapidly than $D_2 O$
7.	Which of the following pair of ions makes the water hard		(b) Reaction between H_2 and Cl_2 is much faster than D_2 and
	[AMU 2002]		Cl_2
	(a) Na^+ , SO_4^{2-} (b) K^+ , HCO_3^-		
	(c) Ca^{2+}, NO_3^- (d) NH_4^+, Cl^-		(c) D_2O freezes at lower temperature than H_2O
8.	Temporary hardness of water can be removed by		(d) Bond dissociation energy for D_2 is greater than ${\cal H}_2$
0.	[Pb. PMT 2001]	20.	Which of the following will determine whether the given colourless
	(a) Addition of potassium permagenate		liquid is water or not
	(b) Boiling		(a) Melting
	(c) Filtration		(b) Tasting
	(d) Addition of chlorine		(c) Phosphthalein
9.	When zeolite (Hydrated sodium aluminium silicate) is treated with		(d) Adding a pinch of anhydrous $CuSO_4$
	hard water the sodium ions are exchanged with	21.	Lead pipes are not used for carrying drinking water because
	[DPMT 2000]		(a) They are covered with a coating of lead carbonate
	(a) OH^- ions (b) SO_4^{2-} ions		(b) They are corroded by air and moisture
	(c) Ca^{2+} ions (d) H^+ ions		(c) Water containing dissolved air attacks lead forming soluble
10.	Which of the following statements do not define the characteristic		hydroxide (d) None of these
	property of water "Water is a universal solvent"	22.	(a) None of these Which one of the following removes temporary hardness of water
	(a) It can dissolve maximum number of compounds	44.	(a) Slaked lime (b) Plaster of Paris
	(b) It has very low dielectric constant		(c) Cuprous (d) Hydrolith
	(c) It has high liquid range	23.	Which of the following will cause softening of hard water
	(d) None of these		(a) Passing it through cation exchange resin
11.	The velocity of neutrons in nuclear reactor is slowed down by		

(b) Passing it through ani	-				List I		List	
(c) Passing it through sar				1.	Heavy water			es of <i>Mg</i> and
(d) Passing it through alu					Tampanany band wate		in water	ons in water
which of the following pro removed, by adding	cess permanent hard			2. 3.	Temporary hard wate Soft water			ons in water
	(h) Caliman	[AFMC 2005]		3.			D_2O	
(a) Sodalime	(b) Sodiumb			4.	Permanent hard wate			nd chlorides of
(c) Washing soda	(d) Sodium	chloride		0.1		Me	g and <i>Ca</i> in v	/ater
Permutit is technical name				Cod	es 1- <i>c</i> , 2- <i>d</i> , 3- <i>b</i> , 4- <i>a</i>	(b)	1- <i>b</i> , 2- <i>a</i> , 3-c	
(a) Aluminates of calcium					1- <i>c</i> , <i>2-d</i> , <i>3-b</i> , <i>4-a</i> 1- <i>b</i> , 2- <i>d</i> , 3- <i>c</i> , 4- <i>a</i>		1- <i>b</i> , <i>2-a</i> , <i>3-c</i> 1- <i>c</i> , 2- <i>a</i> , 3- <i>b</i>	
(b) Silicates of calcium an			35.	• • •	H - O - H angle in v			, + 0
(c) Hydrated silicates of a		n	33.	ine	II o II ungle in i		cure is about	[AFMC 2001]
(d) Silicates of calcium an				(a)	90°	(b)	180°	
The approximate mass of t	ritium oxide molecule	is		(c)	102°		105°	
(a) 18 <i>amu</i>	(b) 20 <i>amu</i>		36.		n two ice cubes are pro			
(c) 22 <i>amu</i>	(d) 24 <i>amu</i>			toge	cube. Which of the foll ther	owing forc	es is respons	AFMC 2001
Molecular weight of heavy	water is				Hydrogen bond format	tion		[]
(a) 19	(b) 18			(b)	Van der Waals forces			
(c) 17	(d) 20			(c)	Covalent attraction			
Water is said to be perman	ently hard when it co	ontains		(d)	lonic interaction	1 · 1		
(a) Sulphates of <i>Mg</i> and	Ca		37.		t is formed when calciu			ieavy water[Manipa
(b) Bicarbonates of <i>Mg</i> and	nd <i>Ca</i>			(a)	$C_2 D_2$		CaD_2	
(c) Sulphates of <i>Cu</i> and <i>b</i>	Чg			(c)	Ca_2D_2O	(d)	CD_2	
(d) Carbonates and bicarl	ponates of <i>Mg</i> and <i>Ca</i>	1	38.	Pure	water can be obtained	from sea v	water by	
Sodium sulphate is soluble	in water but barium	sulphate is insoluble					-1 1 .	[CBSE PMT 2001]
because		[Pb. PMT 1995]		(a)	Centrifugation		Plasmolysis Sedimentati	an
(a) The hydration energy	y of Na_2SO_4 is m	nore than its lattice	39.	(c) Acti	Reverse osmosis on of water or dilute m			
energy			55.	,			, en metale e	[Kerala PMT 2002]
(b) The lattice energy o	f BaSO₄ is more	than its hydration		(a)	Monohydrogen	(b)	Tritium	
energy	20004			(c)	Dihydrogen	(d)	Trihydroger	ı
(c) The lattice energy has	no role to play in so	lubility		(e)	D_2			
		-	40.	Meta	al which does not reac	t with cold	l water but	evolves H_2 with
(d) The hydration energ	y of Na_2SO_4 is	less than its lattice	•	stea				[DCE 2002]
energy				(a)	Na	(b)	К	
(e) Both (a) and (b)				(c)	Pt	(d)	Fe	
The alum used for purifyin	-	[EAMCET 1999]	41.	pН	of neutral water at room	n temperat	ure nearly	
(a) Ferric alum	(b) Chrome			(a)	0	(b)	14	
(c) Potash alum	(d) Ammoni			(c)	7	(d)	10^{-7}	
Which of the following me	tal will not reduce H	$_2O$	42.	Max	imum number of hydro	gen bondir	ng in H_2O	is
		[CPMT 1999]						T 2004; BHU 2004]
(a) Ca	(b) <i>Fe</i>			(a)	-			
(c) <i>Cu</i>	(d) Li			(c)		(d)	4	
Which of the following is c	orrect about heavy w	ater	43.	The	low density of ice comp	pared to wa	ater is due to	
		[DCE 2002]						[Pb. CET 2004]
(a) Water at $4^{\circ}C$ having	g maximum density	is known as heavy		(a)	Induced dipole-induced			
water				(b)	Dipole-induced dipole			
(b) It is heavier than wate	er (H_2O)			(c)	Hydrogen bonding into			
(c) It is formed by the co	mbination of heavier	isotope of hydrogen		(d)	Dipole-dipole interaction			
and oxygen		seepe of injuriogen	44.	Whi	ch of the following acid	is formed	when SiF_4	reacts with water
(d) None of these								[BHU 2004]
The boiling point of water	is exceptionally high	because		(a)	SiF ₄	(b)	H_2SiF_4	
	. , , ,	[KCET 2001]		(c)	H_2SO_4	(d)	H_2SiF_6	
(a) There is covalent bond	d between <i>H</i> and <i>O</i>			. ,		(u)	25116	
(b) Water molecule is line			45.		le point of water is		a = a ==	[AFMC 2004]
(c) Water molecules asso		bonding		(a)	273 <i>K</i>	(b)	373 <i>K</i>	
(d) Water molecule is not				(c)	203 <i>K</i>	(d)	193 <i>K</i>	
Match list I with list II and	select the correct an		46.	Haro	lness of water is due to	presence of	of salts of	
given below the lists		[SCRA 2001]						[BHU 2005]

	(a) Na and K	(b) C_{a} and M_{g}		(a) KMnO ₄	(b)	PbS
	(c) Ca and K	(d) <i>Ca</i> and <i>Na</i>		(c) MnO_2	(d)	H_2S
	Hydrogen p	peroxide	11.	Fenton's reagent is		[MP PET 2000; RPET 2000]
_				(a) $FeSO_4 + H_2O_2$	(b)	Zn + HCl
1.	In which of the following reaction		e	(c) $Sn + HCl$	(d)	None of these
	agent	-	HU 1995] 12.	The structure of H_2O_2 is		[CBSE 1999; AFMC 2004]
	(a) $2FeCl_2 + 2HCl + H_2O_2$	5 2		(a) Planar		Linear
	(b) $Cl_2 + H_2O_2 \rightarrow 2HCl + Cl_2$	-	13.	(c) Spherical The volume strength of 1.5 /	. ,	Non-planar solution is
	(c) $2HI + H_2O_2 \rightarrow 2H_2O + H_2O_2$	-	13.	The volume strength of 1.3 /	$11_{2}0_{2}$	[BHU 2004; Pb. CET 2004]
	(d) $H_2SO_3 + H_2O_2 \rightarrow H_2SO_3$. 2		(a) 8.4 <i>litres</i>	(b)	4.2 <i>litres</i>
2.	There is a sample of 10 volum Calculate its strength		solution. AT 2001]	(c) 16.8 <i>litres</i>	(d)	5.2 <i>litres</i>
	(a) 3.00%	(b) 4.045%	14.	The volume of oxygen libera	ated from 1	5 <i>ml</i> of 20 volume H_2O_2 is[MH CET 2
	(c) 2.509%	(d) 3.035%		(a) 250 <i>ml</i>		300 <i>ml</i>
3.	In lab H_2O_2 is prepared by	[CPMT 2002; MH C	15	(c) 150 <i>ml</i> The strength in volumes of	()	200 <i>ml</i> on containing 30.36 <i>g/litre</i> of
		Pb. PMT 2004; BCE	CE 2005] 13.	H_2O_2 is		[UPSEAT 2004]
		(b) $HCl + BaO_2$		(a) 10 volume	(b)	20 volume
	2 . 2 2	(d) $H_2 + O_2$		(c) 5 volume	(d)	None of these
4.	The structure of H_2O_2 is	[UPSE	AT 2001] 16.	Hydrogen peroxide is used a	as	
	(a) $H \longrightarrow O - O H$	(b) $H O - O H$		(a) Oxidising agent(b) Reducing agent		
				(c) Both as oxidising and r	reducing ag	gent
		H		(d) Drying agent		
	(c) $H - O - O - H$	$ \begin{array}{c} H \\ \downarrow \\ (d) O - O \searrow \\ H \end{array} $	17.	Equivalent weight of H_2O_2	is	
r			I () [Vumuluhatara	(a) 17	(b)	34
5.	<i>HCl</i> is added to the following oxid				(d)	
	(a) MnO_2	(b) PbO_2	18.	20 volume H_2O_2 solution		
_	(c) BaO_2	(d) None of these		(a) 30% (c) 3%	(b) (d)	6% 10%
6.	The oxide that gives hydrogen p		10	H_2O_2 is manufactured the	()	[DCE 2004]
	with a dilute acid (H_2SO_4) is	•	WT 1999] 19.	(a) By the action of H_2O_2		• •
	(a) MnO_2	(b) PbO_2				
	(c) Na_2O_2	(d) TiO_2		(b) By the action of H_2SC	O_4 on Na	a_2O_2
7.	Hydrogen peroxide is reduced by	MT 2000; CBSE PMT 2000; KC	FT 2002]	(c) By electrolysis of 50%	H_2SO_4	
	(a) Ozone	111 2000, CDDE 1111 2000, KC	-	(d) By burning hydrogen in		
	(b) Barium peroxide		20.	Which one of the following		
	(c) Acidic solution of $KMnO_4$			(a) NO_2		MnO_2
_	(d) Lead sulphide suspension			(c) BaO_2	(d)	SO ₂
8.	The reaction of $H_2S + H_2O_2 -$		21.	1 <i>ml</i> of H_2O_2 solution give	es 10 <i>ml</i> of	O_2 at NTP. It is
	(a) Acidic nature of H_2O_2	[UPSE/	AT 2000]	(a) 10 vol. H_2O_2	(b)	20 vol. H_2O_2
				(c) 30 vol. H_2O_2	(d)	40 vol. H_2O_2
	(b) Alkaline nature of H_2O_2		22.	Which substance does not s	peed up de	ecomposition of H_2O_2
	(c) Oxidising nature of H_2O_2			(a) Glycerol	(b)	
	(d) Reducing action of H_2O_2			(c) Gold	()	MnO ₂
9.	What is the product of the reacti		ET 2002] 23.	Which of the following cann		-
	(a) $O + HOCl$	(b) $HCl + O_2$	ET 2003] 23.			
	(a) $O_2 + HOCl$., 2		(a) O_3		KI / HCl
	(c) $H_2O + HCl$	(d) $HCl + H_2$		(c) PbS	(d)	Na_2SO_3
10.	H_2O_2 will oxidise	[Roor	kee 1995] 24.	Which substance cannot be	reduced by	H_2O_2



	(a) $KMnO_4 / H_2SO_4$	(b)	$K_2Cr_2O_7 / H_2SO_4$
	(c) Ag_2O		Fe^{3+}
~~	() 02		
25.	Which of the following statement		
	(a) H_2O_2 can act as an oxidis		
	(b) H_2O_2 can act as a reducin		ent
	(c) H_2O_2 has acidic propertie	s	
	(d) H_2O_2 has basic properties		
26.	H_2O_2 is		
	(a) Poor polar solvent than wat	er	
	(b) Better polar solvent than H	$0_2 O$	
	(c) Both have equal polarity		
	(d) Better polar solvent but its its use as such	stroi	ng auto oxidising ability limits
27.	$H_2 O_2$ used in rockets has the c	oncer	ntration
	(a) 50%	(b)	70%
	(c) 30%	(d)	90%
28.	H_2O_2 is a		
	(a) Weak acid	• •	Weak base
	(c) Neutral	(d)	None of these
29.	Nitrates of all metals are (a) Soluble in water	(b)	Insoluble
	(c) Coloured	(d)	Unstable
30.	Decomposition of H_2O_2 is prev	. ,	l by
	(a) <i>NaOH</i>		MnO_2
	(c) Acetanilide		Oxalic acid
31.	H_2O_2 is always stored in black	. ,	
0	(a) It is highly unstable		
	(b) Its enthalpy of decomposition	n is l	nigh
	(c) It undergo autooxidation on	prole	onged standing
	(d) None of these		
32.	H_2O_2 on reacting with ethene g	gives	
			Ethanal
	(c) Ethylene glycol	• •	Ethanol
33.	Which of the following is wrong		
	(a) As aerating agent in produc(b) As an antichlor	tion o	of spong rubber
	(c) For restoring white colour of	of blac	ekened lead painting
	(d) None of these		
34.	$H_2O_2 \rightarrow 2H^+ + O_2 + 2e^-;$	<i>E</i> ° =	= -0.68 V. This equation
	represents which of the following	; beha	aviour of H_2O_2
	(a) Reducing	(b)	Oxidising
	(c) Acidic	(d)	Catalytic
35.	The structure of H_2O_2 is		
	(a) Open book like	(b)	Linear
26	(c) Closed book	(d)	Pyramidal
36.	On shaking H_2O_2 with acidifie ethereal layer becomes	u po	cassium dichromate and ether,
	(a) Green	(b)	Red
	(c) Blue	(d)	Black
37.	K_a of H_2O_2 is of the order of		[MP PMT 1994]

	(a) 10^{-12} (b) 10^{-14}	
	(c) 10^{-16} (d) 10^{-10}	
38.	In which of the following reactions, H_2O_2 acts as a reducing agen	t[EAMCET
	(a) $PbO_2(s) + H_2O_2(aq) \rightarrow PbO(s) + H_2O(l) + O_2(g)$	
	(b) $Na_2SO_3(aq) + H_2O_2(aq) \rightarrow Na_2SO_4(aq) + H_2O(l)$	
	(c) $2Kl(aq) + H_2O_2(aq) \rightarrow 2KOH(aq) + I_2(s)$	
	(d) $KNO_2(aq) + H_2O_2(aq) \rightarrow KNO_3(aq) + H_2O(l)$	
39.	H_2O_2 acts as an oxidising agent in [Kerala PMT 2004	4]
	(a) Neutral medium	
	(b) Acidic medium (c) Alkaline medium	
	(d) Alkaline and neutral medium	
	(e) Acidic and alkaline medium	
40.	The $H - O - O$ bond angle in H_2O_2 is [Kerala PMT 2004	4]
	(a) 107.28° (b) 109.28°	
	(c) 104.5° (d) 106°	
	(e) 97 ^o	
41.	The volume of oxygen liberated from $0.68gm$ of H_2O_2 is	
	[Pb. PMT 2004	4]
	(a) $112 ml$ (b) $224 ml$	
	(c) 56 ml (d) 336 ml	
	Objective Questions	
ı.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species	
I.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species	
	 Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species 	
	 Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species 	œ
	 Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species 	
	 Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O₂ because 	
	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 because H_2O molecule has (a) Fewer electrons than oxygen (b) Two covalent bonds	
	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 because H_2O molecule has (a) Fewer electrons than oxygen (b) Two covalent bonds (c) V-shape	
2.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 because H_2O molecule has (a) Fewer electrons than oxygen (b) Two covalent bonds	7]
2.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 because H_2O molecule has [IIT 1997 (a) Fewer electrons than oxygen (b) Two covalent bonds (c) V-shape (d) Dipole moment One mole of calcium phosphide on reaction with excess water gives (a) One mole of phosphene	7]
2.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 becaus H_2O molecule has (a) Fewer electrons than oxygen (b) Two covalent bonds (c) V-shape (d) Dipole moment One mole of calcium phosphide on reaction with excess water gives (a) One mole of phosphene (b) Two moles of phosphoric acid	7]
2.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 because H_2O molecule has [IIT 1997 (a) Fewer electrons than oxygen (b) Two covalent bonds (c) V-shape (d) Dipole moment One mole of calcium phosphide on reaction with excess water gives (a) One mole of phosphene	7]
2.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 because H_2O molecule has [IIT 1997 (a) Fewer electrons than oxygen (b) Two covalent bonds (c) V-shape (d) Dipole moment One mole of calcium phosphide on reaction with excess water gives (a) One mole of phosphene (b) Two moles of phosphene (c) Two moles of phosphene (d) One mole of phosphorus pentaoxide When zeolite, which is hydrated sodium aluminium silicate,	7] [11T 1999]
3.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 because H_2O molecule has [IIT 1997 (a) Fewer electrons than oxygen (b) Two covalent bonds (c) V-shape (d) Dipole moment One mole of calcium phosphide on reaction with excess water gives (a) One mole of phosphene (b) Two moles of phosphene (c) Two moles of phosphene (d) One mole of phosphene (d) One mole of phosphorus pentaoxide When zeolite, which is hydrated sodium aluminium silicate, treated with hard water the sodium ions are exchanged with	7] [11T 1999]
3.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 because H_2O molecule has (a) Fewer electrons than oxygen (b) Two covalent bonds (c) V-shape (d) Dipole moment One mole of calcium phosphide on reaction with excess water gives (a) One mole of phosphene (b) Two moles of phosphene (d) One mole of phosphene (e) Two moles of phosphene (f) One mole of phosphene (g) One mole of phosphene (h) Two moles of phosphene (h) One mole of phosphene (h) Two moles of phosphene (h) One mole of phosphene (h) Two moles of phosphene	7] [11T 1999]
2. 3.	Polyphosphates are used as water softening agents because they (a) Form soluble complexes with anionic species (b) Precipitate anionic species (c) Forms soluble complexes with cationic species (d) Precipitate cationic species The critical temperature of water is higher than that of O_2 because H_2O molecule has [IIT 1997 (a) Fewer electrons than oxygen (b) Two covalent bonds (c) V-shape (d) Dipole moment One mole of calcium phosphide on reaction with excess water gives (a) One mole of phosphene (b) Two moles of phosphene (c) Two moles of phosphene (d) One mole of phosphene (d) One mole of phosphorus pentaoxide When zeolite, which is hydrated sodium aluminium silicate, treated with hard water the sodium ions are exchanged with	7] [11T 1999]
1. 2. 3. 4.	Polyphosphates are used as water softening agents because they(a) Form soluble complexes with anionic species(b) Precipitate anionic species(c) Forms soluble complexes with cationic species(d) Precipitate cationic speciesThe critical temperature of water is higher than that of O_2 becaus H_2O molecule has(a) Fewer electrons than oxygen(b) Two covalent bonds(c) V-shape(d) Dipole momentOne mole of calcium phosphide on reaction with excess water gives(a) One mole of phosphene(b) Two moles of phosphene(d) One mole of phosphorus pentaoxideWhen zeolite, which is hydrated sodium aluminium silicate, treated with hard water the sodium ions are exchanged with(a) H^+ ions(b) Ca^{2+} ions(c) Mg^{2+} ions(d) Both Ca^{2+} and Mg^{2+}	7] [11T 1999]

- (c) An oxidising agent
- (d) A reducing agent

CLICK HERE **》**

6.if ydrogen can be obtained from water by (a) Reaction with mort-metal excles (b) Reaction with mort-metal excles (c) Reaction with mort-december of Reaction with mort-reaction exclusion global motor (c) Reaction to hydrolide reacts very shouly with cold water to (c) Reaction to hydrolide in moter at 25°C is 10.03 given (c) Adapting of a factor morthydic is given with ydrolid water to (c) Schum tordrydride in water at 25°C is 10.03 given (c) Calcium exists with metal water (c) Calcium exists with react at 25°C is 10.03 given (c) Calcium exists with exists and water at 25°C is 10.03 given (c) Calcium exists with exists and water at 25°C is 10.03 given (c) Calcium exists with exists and water at 25°C is 10.03 given (c) Calcium exists with exists and water at 25°C is 10.03 given (c) Calcium exists with exists and water at 25°C is 10.03 given (c) Calcium exists with exists and water at 25°C is 10.03 given (c) Calcium exists with exists water at 25°C is 10.03 given (c) Calcium exists water at				
(i)Production with module(i)Reaction with module(i)Reaction with module(ii)Reaction with module(iii)Reaction with module(iii)Water containing a ford mot source?(i)Water containing a ford mot source?(i)Water containing a ford mot source?(ii)Water containing a ford mot source?(iii)Water containing a ford motorybrid reases very solved by with cold water(i)Sodium hoodlyshif cast wery solved by with cold water to produce H_2 (i)Sodium hoodlyshif cast wery solved by with cold water to produce H_2 (i)Sodium hoodlyshif cast wery solved by with cold water to produce H_2 (i)Sodium hoodlyshif cast wery solved by with cold water to produce H_2 (i)Sodium hoodlyshif cast were yould with cold water to produce H_2 (i)Sodium motorybrid cast were yould with cold water to produce H_2 (i)Sodium motorybrid cast were yould with cold water to produce H_2 (i)Addium cold in the intervent is store C (i)Calcium carbia(i)Calcium carbia(i)Mating point of sodium bordlyshif extent of the is store C (i)Mather is a good combutor of heat(ii)Mather is a good combutor of heat(ii)Mather is a good combutor of heat(ii)Mather is is some C (ii)Mather is is some C (iii)Mather is is some C (iii)Mather is is some C (iii)Mather is is some C (iiii)M	6.			
i.e. (d)Restriction with netable metable (d)Water (e)Water (f)			19.	
 (d) Backing with meal hydrides (e) Water containing grow patch hum (f) Water containing grow draps of <i>HC</i> (g) Water containing grow draps of <i>HC</i> (h) Water containing grow draps of <i>HC</i> (g) Water containing grow draps of <i>HC</i> (h) <i>Water containing grow draps of <i>HC</i></i> (h) <i>Water containing grow mater</i>, by the dol water (h) <i>Solidum borohydride reacts very slowly with cold water or</i> (h) <i>Solidum borohydride reacts very slowly with cold water or</i> (h) <i>Solidum borohydride reacts very slowly with cold water or</i> (h) <i>Solidum borohydride is subcr</i> (h) <i>Kag CO</i> (i) <i>Calchim carbié</i> (h) <i>Calchim mybride</i> (i) <i>Calchim carbié</i> (j) <i>Lo density in ner than water</i> (j) <i>Lo density in the than water</i> (j) 				с ,
7. Which of the following size hard varter() 20. Manual of groups 7, 8 and 9 do not form metallic hydrides. This is the set or the size or the siz				
	7.		20.	
 i. (i) Water containing common shit (i) Mater containing common shit (i) Softum containing common shit (ii) Softum containing common shit (iii) Softum containing common shit (iiii) Softu actaining commo				
i. (i)Where reasoning Mg(HCO1)2 is basked the profession of Mg(HCO1)2 is basked th		(b) Water containing a few drops of <i>HCl</i>		(a) Hydride gap (b) Hydride shift
8.Pick the old one outproduct $M_2 CO_3$ (b) MgO (a) Softium borehydride reacts very violently with cold water to produce H_2 (c) $M_2 CO_3$ (c) $M_2 CO_3$ (c) $M_2 CO_3$ (c) Solubility of sodium borehydride is 50°C22.Permanent barches due to $M_2^{0.1}^{-1}$ ons is best removed by(c) Solubility of sodium borehydride is 50°C22.Permanent barches due to $M_2^{0.1}^{-1}$ ons is best removed by(c) Calcium carbide(b) Calcium hydride(c) Calcium oxid(c) Atorn arbide(d) Calcium(d) Calcium(d) Not arbity is more than water(d) tas density is less than water(e) Hydrogen and the torreer statement(f) Hydrogen of Hat(f) tas density is less than water(f) Hydrogen of Het(g) Atro2(h) Matel durinit moide(f) Hydrogen of Het(g) Atro2(h) PPO_2(g) Hermerature pure arbo-hydrogen can be obtained(g) Atro2(h) PPO_2(g) Hermerature pure arbo-hydrogen can be obtained(g) Atro2(h) PPO_2(g) None of these(g) Atro2(h) PPO_2(g) None of these(g) Atro2(h) PPO_2(g) None of these(g) Cu + HCl(d(l)(h) Fer + H_2O_4(g) Cu + HCl(d(l)(h) Fer + H_2O_4(g) Atrop are in behave as a metal(h) Atrop(g) Atrop are in behave as a metal(h) Atrop(g) Atrop are in behave as a metal(h) Atrop(h) Atrop hydrogen real behave(h) Atrop(g) Atrop are in behave as a metal(h) At very hydr persaure(h) Atrop behaver(h) At very hydr persaure		(c) Water containing common salt		(c) Anhydride (d) Dehydride
iii <th< th=""><th></th><th></th><th>21.</th><th>When temporary hard water containing $Mg(HCO_3)_2$ is boiled the</th></th<>			21.	When temporary hard water containing $Mg(HCO_3)_2$ is boiled the
(b)(c)(8.			
produce H_1 (d) Maliny of solum horshydride in water at 25° C is 10.05 g/mL(e) $Ma(CH)_2$ (d) None of these(e) Solubility of solum horshydride is 50° C(e) $Ca(DT)_2$ (f) $Na_2(Ca_1)$ (f) $Ca(Ca) March (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)$				(a) $MgCO_3$ (b) MgO
(c)Solubility of sodium barohydride in water at 25° C is 10.05 g/mL. 22. Permanent hardness due to Mg^{2^-} ions is best removed by(d)Making point of sodium barohydride is 50° C.(e) $Ca(CM)_2$ (f)(h) Aa_2CO_3 .(e)Calcium oxide(d)Calcium hydride(f)(f)(f)(f)(f)(e)Mat is true about ice(d)Calcium hydride(f) </th <th></th> <th></th> <th></th> <th>(c) $Mg(OH)_2$ (d) None of these</th>				(c) $Mg(OH)_2$ (d) None of these
(a)Adding point of sadium biorolydride is 500° C(a) $Ca(OH)_2$ (b) Na_2CO_3 9.Hydrogen can be obtained from water, by the action of water on (a)(b)Calcium hydrode (c)(c) $Na_5CO_3 + Ca(OH)_2$ (c)None of these10.What is true about ice (a)(b)Calcium hydrode (c)(c) $Na_5CO_3 + Ca(OH)_2$ (c)None of these10.What is true about ice(c)The most abundant element in the universe is (c)(c)None of these11.Hydrogen conductor of hat (c)(c)Heated form oxide (d)Heated form ice (IT 1985)(c)Heated form ice (IT 1986)12.Heated cupric oxide (c)(d)Heated form ice (d)(IT 1994)(b)Softwater (c)13.Which of the following pair will not produce dihydrogen gas (c)(d)None of these1613.Which of the following pair will not produce dihydrogen gas (c)(d)None of these1614.The anount of IJ_{2O_2} present in 1 L of 15 NII_2O_2 solution is (c)(d)None of these1715.Hydrogen is evolved by the action of cold dil.HINO ₂ on (d)None of these1616.Hydrogen is evolved by the action of cold dil.HINO ₂ on (d)None of these17. D_2O is low are main (c) A are wyligh tremperature (c) A are wyligh tremperature (d) A are wyligh tremperature (e) A are well in the solution of water (c)18.Hydrogen is evolved by th			22.	Permanent hardness due to $M \rho^{2+}$ ions is best removed by
9.Hydrogen can be obtained from water, by the action of water on (a) Calcium arbide(b) Calcium hydrogen (c) Calcium solde(c) Calcium hydrogen (c) Calcium hydrogen (c) Tasteles(c) None of these10.What is true about ice (c) It is a thermal insulator (d) It is a density is last the water (c) It is a thermal insulator (d) It is a density is last the water (c) It is a thermal insulator (d) It is density is last the water (d) It is a density is last the water (e) Hadted cupric oxide (c) Hadted durinitium oxide(IT 1986) (a) MnO2 (b) PbO2 (c) BuO (c) BuO (c) BuO (c) MaC2 (c) SuO(c) Hadted durinitium oxide (c) Hydrogen are be produced by heating (a) Cu + HCl(dll) (b) Fe + H_2SO4, (c) SuG (c) SuG(c) None of these (c) SuG (d) None of these13.Which of the following pair will not produce dilydrogen gas (c) SuG (c) SuG (c) SuG (c) SuG (c) SuG (c) SuG (c) SuG (c) SuG(f) None of these (c) SuG (d) None of these14.The amount of H_2O_2 present in L of IS NH_2O_2 solution is (a) $Ax = aloba(c) Maderal whose solubility in water decreases withrise of Examperature is(c) Maderal whose solubility in water decreases withrise of Examperature is(d) None of these15.Hydrogen is evolved by the action of cold dil. HNO3 on(c) A very high pressure(d) A very low pressure(d) Au very low pressure(d) Su very low pressure(d) Au very low pressure(e) Au very high pressure(f) D_2O is because(d) None of these15.Hydrogen is a balawe as a model(c) Au very high pressure(d) Au very low pressure(d) None of these16.Hydrogen is a balawe as a model(e) Au very high pressure$,	
(a) Calcium carbide (b) Calcium lydride (c) Calcium oxide (c) Calcium oxide (c) Calcium oxide (c) Calcium oxide (c) The a good conductor of hat (c) Its density is more than water (d) Its density is more than water (d) Its density is less than water (d) Its density is less than water (e) Hydrogen will nor reduce (c) Heated farmic oxide (c) Heated farmic oxide (d) Heated farmic oxide (e) Heated farmic oxide (f) Heated farmic oxide (g) Heated farmic oxide (h) Heated farmic oxide (c) Heated farmic oxide (c) Heated farmic oxide (c) Heated farmic oxide (c) BoO (d) Mone of these [IT 1986] (a) MnO_2 (b) PbO_2 (c) M_3 + steam (d) Ma alcohol [IT 1986] (c) M_3 + steam (d) Ma alcohol [IT 1986] (d) Ma alcohol [IT 1986] (e) Ca (f) Mad water (f) Mad water (h) Mad condition is (h) Mad condition is 	9.			
(c)Calcium oxide(d)Calcium10.What is three about ice(e)Holium(a)Its density is more than water(b)(c)Holium(a)Its density is more than water(c)(d)(d)(d)(d)Its density is less than water(IIT 1985)(d)(d)(d)(e)Hoted cupric oxide(f)Heated ferric oxide(f)(d)(f)Hated cupric oxide(f)Heated ferric oxide(f)(g)Hoted cupric oxide(f)Hoted ferric oxide(f)(g)Hoted cupric oxide(f)Hoted ferric oxide(f)(g)Kande(f)Fe + H_2SO_4(h)(g)Kande(f)(f)Hatel oxide(f)(g)Kande(f)Hatel(f)(h)Fe + H_2SO_4(h)Softwater only(g)Kande(f)(f)Hatel(h)Kande(f)Hatel(f)(h)Katel(f)Hatel(f)(h)Katel(f)(f)(f)(h)Katel(f)<				
10.What is true about iceIHydrogen(d)Helium(a)Its density is more than water(a)Hydrogen(b)Hydrogen(c)Hydrogen(d)Hydrogen(e)Hydrogen(e)Hydrogen(f)Hydr		(c) Calcium oxide (d) Calcium	23.	
(a) Its density is more than water (b) It is a good conductor of heat (c) It is a thermal insulator (d) It is a thermal insulator (d) It is a thermal insulator (d) It is a thermal insulator (e) It is a thermal insulator (f) Heated sumic oxide (f) None of these24.Pick out the correct statement. (f) By decreasing the temperature pure para-hydrogen can be obtained (f) By decreasing the temperature pure ortho-hydrogen can be obtained (f) By decreasing the temperature pure para-hydrogen can be obtained (f) By decreasing the temperature pure ortho-hydrogen can be obtained (f) By decreasing the temperature pure ortho-hydrogen can be obtained (f) By decreasing the temperature pure para-hydrogen can be obtained (f) By decreasing the temperature pure ortho-hydrogen can be obtained (f) By decreasing the temperature pure ortho-hydrogen can be obtained (f) Bo doci sumice the doci sum oxide text settement. (f) Mar (f) Heated sum into movide (f) None of these12.Heat decreasing the temperature pure ortho-hydrogen can be obtained (f) None of these13.Hydrogen can be produced by heating (f) None of these14.The amount of H_2O_2 present in L of $L_5 NH_2O_2$ solution is (a) $A_6 = (b) Mn$ (c) $A_0 = A_0 = (b) Man ($	10.	What is true about ice		
		(a) Its density is more than water	24.	
(d) Its density is less than water(d) Its density is less than water(e) Heated stamic oxide(f) Heated stamic oxide(g) Heated stamic oxide(h) Heated stamic oxide(g) Heated stamic oxide(h) Heated stamic oxide(g) MnO_2 (h) PbO_2 (c) BaO (c) BaO (d) None of these(e) Mg steam(f) Mg steam(g) Mg steam		(b) It is a good conductor of heat		
InHydrogen will not reduce[IT 1985] (a) Heated cupric oxide(b) Heated ferric oxide(c) It 1985] (c) Bacd(d) Heated aluminium oxide12.HC/is added to following oxides. Which one would give H_2O_2 [IT 1980] (c) BaO (d) Heated aluminium oxide(d) By increasing the temperature pure para-hydrogen can be obtained(a) MnO_2 (b) PbO_2 (c) BaO (d) None of these(d) By increasing the temperature pure para-hydrogen can be obtained(a) MnO_2 (b) PbO_2 (c) BaO (d) None of these(d) None of these(a) $Cu + HCl(dil)$ (b) $Fe + H_2SO_4$ (c) $Sodium contate(d) None of these(a) Cu + HCl(dil)(b) Fe + H_2SO_4(c) Sodium contate(d) None of these(a) Cu + HCl(dil)(b) Fe + H_2O_2 present in 1 L of 15 NH_2O_2 solution is(c) Both (a) and (b)(c) Both (a) and (b)(d) Mg + steam(d) Na + alcohol(d) Water contains plum juice(e) 30 g(d) 80 g(d) None of these(f) Mg' begins is cooled by the action of cold dil. HNO_3 on(f) Mardress producing salt, whose solubility in water decreases with rise of temperature is(a) Fe(b) Mn(c) Ca(HCO_3)_2(d) MgSO_4(e) Cu + yhigh pressure(d) At very low pressure(d) At very high pressure(f) D_2O is prefered to H_2O, as a moderator, in nuclear reactors because(e) Fee from only Ca^{2+}, Mg^{2+} ions(f) D_2O has high specific heat(c) Free from only Ca^{2+}, Mg^{2+} ions(g) None of these(h) Free from only Ca^{2+}, SO_4^{2-} ind CT ions only($		(c) It is a thermal insulator		
i.Hydrogen will not reduce[IT 1985](a) Heated cupric oxide(b) Heated ferric oxide(c) Heated farric oxide(c) By decreasing the temperature pure para-hydrogen can be obtained(a) MnO_2 (b) PbO_2 (c) MnO_2 (c) PbO_2 (c) Cu with H_2SO_4 (c) Sodium formate(c) Sodium formate(c) BzO (d) None of these(e) Sodium formate(f) None of these(f) None of these(a) $Cu + HCl(dil)$ (b) $Fe + H_2SO_4$ (c) $Mg + steam$ (d) $Na + alcohol$ (f) Water containing plum juice(a) $Cu + HCl(dil)$ (b) $Fe + H_2SO_4$ (c) $Mg + steam$ (d) $Na + alcohol$ (f) Water containing solum chloride. It is(a) $2.5 g$ (b) $2.5.5 g$ (c) $3.0 g$ (d) $8.0 g$ (f) Hard water only(f) None of these(a) $2.5 g$ (b) An (c) $CaCU$ (d) Al (d) Al (f) Mand water(d) None of these(b) Hydrogen can behave as a metal(a) Al (b) $CaCO_4$ (c) $CaCU_2$ (b) $CaSO_4$ (c) $At very high pressure(d) At very low pressure(d) At very low pressure(e) Salw (C) Salw(f) Mare vater(b) D_2O has high specific heat(f) At very high pressure(f) At very high pressure(f) At very high pressure(h) At very high pressure(h) D_2O has high specific heat(f) At very high pressure(h) At very high pressure(h) At very high pressure(h) D_2O has high specific heat(h) At very$		(d) Its density is less than water		
(a) Heated cupric oxide (c) Heated stannic oxide (c) Heated stannic oxide (d) Heated aluminium oxide (d) Heated aluminium oxide (d) Heated aluminium oxide (d) MaC2 (e) BaO (f) PbO_2 (f) PbO_2 (g) BaO (g) $CaSO$ (h) None of these(d) None of these (f) $CaSO_4$ (f) $Software only(f) Software for only(f) Software$	11.	Hydrogen will not reduce [IIT 1985]		
12.HC/is added to following oxides. Which one would give H_2O_2 [IT 1980]25.JobanicalHere the following pair will not produce dihydrogen gas [IT 1994](a) MnO_2 (b) PbO_2 (c) $Cu + HCl(diL)$ (b) $Fe + H_2SO_4$ (c)Sodium formate(a) $Cu + HCl(diL)$ (b) $Fe + H_2SO_4$ (c)Sodium formate(c)Sodium formate(c) $Mg + steam$ (d) $Na + alcohol$ Iff 1994](b)Soft water only(c)Hard water only(c) $Mg + steam$ (d) $Na + alcohol$ (d)Water containing plum juice14.The amount of H_2O_2 present in $1 L$ of $15 NH_2O_2$ solution is(c)(d)Water containing plum juice(a) $2.5 g$ (b) $25.5 g$ (c)(d)None of these(b) $A_2 g$ (d) $8.0 g$ (d)(d)None of these(c) $A_2 g$ (d) $A_1 mO_2$ (d) $A_2 SO_4$ (e)(d) $A_1 coreA_2 g(b)CaSO_4(c)(e)Cu + CO_2(d)A_1 somple of water containing some dissolved table sugar and common salt is passed through organic ion exchange resins. The resulting water will be(e)D_2O is preferred to H_2O, as a moderator, in nuclear reactors because(e)Tateless(b)None of these(f)D_2O is cheaper(d)None of these(e)Free from moly Ca^{2+}, Mg^{2+} ions(f)None of these(g)D_2O is cheaper(d)None of these$		• • • • • • • • • • • • • • • • • • • •		
12. $HCr's added to following oxides. Which one would give H_2O_2 [IIT 1984]25.Hydrogen can be produced by heating(a) MnO_2(b) PbO_2(c) RaO(d) None of these(e) Sodium formate(c) BaO(d) None of these(e) Sodium collared (from the transportation of(from the transport transport (from the transport transport (from the transport (from from (from transport (from transport (from from the from transport (from from (from from the from transport (from from (from from (from from (from from transport (from from (from (from from (from (from (from (from (from (from (from (fro$				
(a) MnO_2 (b) PbO_2 (a) Cu with H_2SO_4 (b) Sodium formate(c) BiO (d) None of these(e) SiO (f) None of these(f) None of these(f) None of these(a) $Cu + HCl(diL)$ (b) $Fe + H_2SO_4$ (c) $Mg + steam$ (d) $Na + alcohol$ (e) $Soft water only$ (e) $Soft water only$ (f) $Mg + steam$ (d) $Na + alcohol$ (f) $Na + alcohol$ (f) $Na + alcohol$ (f) $Na + alcohol$ (f) $Na + alcohol$ (a) $L^2 g$ present in $L of LS NH_2O_2$ solution is(f) $Na + alcohol$ (f) $Na + alcohol$ (f) $Na + alcohol$ (g) $2.5 g$ (h) $2.5 g$ (h) $2.5 g$ (h) $Soft water(a) 2.5 g(h) 2.5 g(h) 2.5 g(h) Soft water(a) Ac(h) Soft water(h) Soft water(g) Ac(h) Ad(h) Soft water(g) Ac(h) Ad(h) Ad(g) Ac(h) Ad(h) Ad(g) Ac(h) Ad(h) Ad(g) Ac(h) Ad(h) Ac(h) Ac(h) Ac(h) Ac(h) Ac(h) Ac(h) Ac<$	12.	HCl is added to following oxides. Which one would give H_2O_2 [IIT 1980]	25.	
(c) BaO (d) None of these13.(c) BaO (d) None of these13.(c) $Ca + HCl(dil)$ (b) $Fe + H_2SO_4$ (c) $Mg + steam$ (d) $Na + alcohol$ 14.(c) $Mg + steam$ (d) $Na + alcohol$ (e) $Both (a)$ and (b)(f) $Water only$ 14.(c) $Mg - steam$ (d) $Na + alcohol$ (e) $Both (a)$ and (b)(f) $Water only$ 15.(f) $Mg + steam$ (g) $255 g$ (g) $Mar (a) = 0$ (g) $Mar (a) = 0$ 16.(f) $Fe - (b) Mn$ (g) $Fe - (b) Mn$ (g) $Fe - (b) Mn$ (g) $CaCl_2$ (b) $CaSO_4$ 16.(f) $Fe - from (b) At very low temperature(g) D_2O is preferred to H_2O_2, as a moderator, in nuclear reactors because(g) D_2O loss down fast neutrons better(h) Fe + from HCO_3, SO_4^2^- ions(d) None of these(f) D_2O is cheaper(g) D_2O is cheaper(h) None of these18.Out of the two allotropic forms of dihydrogen, the form with lesser(b) Soap(b) Soft water18.Out of the two allotropic forms of dihydrogen, the form with lesser(b) Soft water(c) Saap (b) Wathing soda18.Out of the two allotropic forms of dihydrogen, the form with lesser(c) Salad(b) Wathing soda(c) Salad(f) None of these(g) Saap (h) Wathing soda(f) D_2O is schaper(h) Saap (h) Saap (h) Saap (g) D_2O is cheaper(h) Saap (h) Saap (h) Saap $		(a) MnO_2 (b) PbO_2	•	
13.Which of the following pair will not produce dihydrogen gas [ITT 1994]26.Plumbosolvency is a health hazard in the transportation of (a) $Ca + HCl(dil)$ (b) $Fe + H_2SO_4$ (c) $Mg + steam$ 26.Plumbosolvency is a health hazard in the transportation of (a) Hard water only14.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (a) 2.5 g (c) 3.0 g25.5 g (d) 8.0 g26.Plumbosolvency is a health hazard in the transportation of (a) Hard water only15.Hydrogen is evolved by the action (c) Gu $Ood Ma_1$ (d) $None of these26.Plumbosolvency is a health hazard in the transportation of(a) Hard water only16.Hydrogen can behave as a metal(b) Mn(c) CuOod Ma_1(d) AI26.Plumbosolvency is a health hazard in the transportation of(d) Water containing plum juice17.D_2O is preferred to H_2O, as a moderator, in nuclear reactorsbecause(a) At very high pressure(d) At very low temperature(e) D_2O is preferred to H_2O, as a moderator, in nuclear reactorsbecause26.Plumbosolvency is a health hazard in the transportation of(d) None of these18.O_2O is preferred to H_2O, as a moderator, in the transport of the wood altorpic forms of themolecular energy is(a) Tasteless(d) None of these18.O_2O is cheapermolecular energy is(a) None of these18.O_1 of the two altorpic forms of themolecular energy is(b) Vashing soda(c) Slaked lime(b) Nahing soda(c) Slaked lime$		(c) <i>BaO</i> (d) None of these		
(a) $Cu + HCl(dil)$ (b) $Fe + H_2SO_4$ (c) $Mg + steam$ (d) $Na + alcohol$ (d) $Na + alcohol$ (e) $Mg + steam$ (d) $Na + alcohol$ (f) $The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is(a) 2.5 g (b) 25.5 g(c) 3.0 g (d) 8.0 g(e) 3.0 g (d) 8.0 g(f) The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is(a) 2.5 g (b) 25.5 g(c) 3.0 g (d) 8.0 g(f) The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is(a) 2.5 g (b) 2.5.5 g(c) 3.0 g (d) 8.0 g(f) The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is(a) 2.5 g (b) 2.5.5 g(c) 3.0 g (d) 8.0 g(f) The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is(a) Fe (b) Mn(c) Cu (d) AI(f) The amount of H_2O_2 is a moderator, in nuclear reactors(a) A t very high temperature (b) A t very low temperature(c) A t very high temperature (b) A t very low pressure(a) D_2O is preferred to H_2O, as a moderator, in nuclear reactorsbecause(a) D_2O slows down fast neutrons better(b) D_2O has high specific heat(c) D_2O is cheaper(d) None of these(d) None of these(f) D_2O is cheaper(g) D_2O is cheaper(g) None of these(h) Free from only Ca^{2+}, Mg^{2+} ions(c) Free from HCO_3, SO_4^2^- and CI^- ions only(d) None of these(f) Soap (b) Vashing soda(c) Slaked lime (d) None of these$	13.		26.	Plumbosolvency is a health hazard in the transportation of
(a) $Ct + HC(att)$ (b) $Fe + H_2 SO_4$ (c) $Mg + steam$ (d) $Na + alcohol$ (a) $L_5 = M_2O_2$ present in 1 L of 1.5 NH_2O_2 solution is (a) $2.5 g$ (b) $25.5 g$ (c) $3.0 g$ (d) $8.0 g$ (a) Fe (b) Mn (c) Cu (d) Al (b) Mn (c) Cu (d) Al (c) Cu (d) Al (d) Al (e) $CaCl_2$ (b) $CaSO_4$ (c) $Ca(HCO_3)_2$ (d) $MgSO_4$ (e) $Ca(HCO_3)_2$ (d) $MgSO_4$ (f) $Mgdregen containing some dissolved table sugar and commo salt is passed through organic ion exchange resins. The resulting water will be (c) At very high temperature (b) At very low pressure(c) At very high pressure (d) At very low pressure(a) D_2O siows down fast neutrons better(b) D_2O los welf the H_2O, as a moderator, in nuclear reactors because(a) D_2O slows down fast neutrons better(b) D_2O los shigh specific heat(c) D_2O is cheaper(d) None of these(e) D_2O is cheaper(f) D_2O los high specific heat(c) D_2O is cheaper(d) None of these(e) D_2O is cheaper(f) D_2O los high specific heat(c) D_2O is cheaper(d) None of these(e) D_2O is cheaper(f) D_2O is cheaper(g) None of these(h) Non$		[IIT 1994]		
(c) Mg + steam(d) Na + alcohol14.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (a) 2.5 g (c) 3.0 g(d) Na + alcohol15.Hydrogen is evolved by the action of cold dil. HNO_3 on [ITT 1998](e) Mn (c) Cu (f) Mart evoluting salt, whose solubility in water decreases with rise of temperature is (a) A trey high temperature (b) At very low temperature (c) At very high pressure (d) At very low pressure(a) A trey high temperature (b) At very low temperature (c) At very high pressure (d) At very low fast neutrons better(a) D_2O los sheaper (b) D_2O has high specific heat (c) D_2O is cheaper(b) D_2O has high specific heat (d) None of these(c) Free from only Ca^{2+} , Mg^{2+} ions (d) None of these(b) Free from only Ca^{2+} , Mg^{2+} ions (c) Staked lime(c) Free from HCO_3^- , SO_4^{2-} and CI^- ions only (d) None of these18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b) Mart ordiant lesser (d) None of these(c) Staked lime (d) None of these		(a) $Cu + HCl(dil)$ (b) $Fe + H_2SO_4$		· · ·
14.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (a) 2.5 g (b) 25.5 g (c) 3.0 g27.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (a) 2.5 g (b) 2.5.5 g (c) 3.0 g27.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (c) 3.0 g27.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (c) 3.0 g27.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (c) 3.0 g27.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (c) 3.0 g27.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (c) 3.0 g27.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (c) 3.0 g27.The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is (c) $Ga(MCO_3)_2$ 27.The amount of H_2O_2 does need (c) $Ca(MCO_3)_2$ 28.The amount of H_2O_2 (c) $Ca(HCO_3)_2$ 20.CaSO4 (c) $Ca(HCO_3)_2$ 27.16.Hydrogen can behave as a metal (a) At very high pressure (b) D_2O is preferred to H_2O_2 , as a moderator, in nuclear reactors because(a) At very high pressure (d) At very low pressure29.A sample of water containing some dissolved table sugar and common salt is passed through organic ion exchange resins. The resulting water will be (a) Tasteless(b) Sweet (c) Salty17. D_2O is preferred to H_2O_2 , as a moderator, in nuclear reactors because(b) D_2O has high specific heat (d) None of these(c) $Free$ from only Ca^{2+} , Mg^{2+} ions (d) None of these18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b) Washing soda		(c) Ma + steam (d) Na + alcohol		
(a) $2.5 g$ (b) $25.5 g$ (c) $3.0 g$ (d) $8.0 g$ Hydrogen is evolved by the action of cold dil. <i>HNO</i> ₃ on [ITT 1998] (a) Fe (b) Mn (c) Cu (d) AI (a) Fe (b) Mn (c) Cu (d) AI (b) At very low temperature (c) At very high temperature (b) At very low temperature (c) At very high pressure (d) At very low pressure (a) D_2O is preferred to H_2O , as a moderator, in nuclear reactors because (a) D_2O slows down fast neutrons better (b) D_2O has high specific heat (c) D_2O is cheaper (d) None of these (e) D_2O is cheaper (f) D_2O is cheaper (g) D_2O is cheaper			27.	A comple of water contains adjum ableride it is
(c) $3.0 g$ (d) $8.0 g$ 28.Hardness producing salt, whose solubility in water decreases with rise of temperature is(a) Fe (b) Mn (c) Cu (d) AI 29.Hardness producing salt, whose solubility in water decreases with rise of temperature is(a) Fe (b) Mn (c) Cu (d) AI 29.A sample of water containing some dissolved table sugar and common salt is passed through organic ion exchange resins. The resulting water will be(a) At very high temperature (c) At very high pressure(d) At very low pressure29.A sample of water containing some dissolved table sugar and common salt is passed through organic ion exchange resins. The resulting water will be(7. D_2O is preferred to H_2O , as a moderator, in nuclear reactors because(d) None of these30.Water obtained by purification with organic ion exchange resins is (a) $Pure$ water(b) D_2O has high specific heat (c) D_2O is cheaper (d) None of these(c) $Free from MCO_3^-, SO_4^{2-}$ and Cl^- ions only (d) None of these18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy isWath of the following can effectively remove all types of hardness of water18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b) Nashing soda (c) Slaked lime(d) None of these	14.	The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is	Ľ	
15.Hydrogen is evolved by the action of cold dil. HNO_3 on IMT 1998]rise of temperature is15.Hydrogen is evolved by the action of cold dil. HNO_3 on IMT 1998]rise of temperature is(a)Fe(b)Mn(c) $CaCl_2$ (b) $CaSO_4$ (c)Cu(d)AI29A sample of water containing some dissolved table sugar and common salt is passed through organic ion exchange resins. The resulting water will be(c)Ca(HCO_3)_2(d) $MgSO_4$ 16.Hydrogen can behave as a metal (c)At very loy temperature (d)At very low pressure29A sample of water containing some dissolved table sugar and common salt is passed through organic ion exchange resins. The resulting water will be17. D_2O is preferred to H_2O , as a moderator, in nuclear reactors because30Water obtained by purification with organic ion exchange resins is (a) Pure water(b) D_2O slows down fast neutrons better(b)Free from only Ca^{2+} , Mg^{2+} ions(c) D_2O is cheaper (d)(d)None of these(d)None of these31.Which of the following can effectively remove all types of hardness of water18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b)Soap (d)(b)Washing soda (a)Soap(b)Washing soda (c)Soap (d)(b)Washing soda 				
15.Hydrogen is evolved by the action of cold dil. HNO_3 on[IIT 1998](a) Fe (b) Mn (c) Cu (d) Al (a) A tvery high comparative(b) At very low temperature(a) A tvery high pressure(d) At very low pressure(c) At very high pressure(d) At very low pressure(c) At very high pressure(d) At very low pressure(a) D_2O is preferred to H_2O , as a moderator, in nuclear reactors because(a) D_2O slows down fast neutrons better(b) D_2O has high specific heat(c) D_2O is cheaper(d) None of these(c) D_2O is cheaper(d) None of these(c) D_2O is cheaper(d) None of these(c) D_2O is the two allotropic forms of dihydrogen, the form with lesser18. Out of the two allotropic forms of dihydrogen, the form with lesser(a) $Soap$ (b) D_2O has high specific hese(b) $CaSO_4$ (c) D_2O is cheaper(b) D_2O is cheaper(c) D_2O is cheaper(c) $Free$ from HCO_3^-, SO_4^{2-} and Cl^- ions only(d) None of these(d) None of these(e) $Cu = U = U = U = U = U = U = U = U = U = $			28.	
IIT 1998](a) Fe (b) Mn (c) Ca (d) AI (e) Cu (d) AI 29.A sample of water containing some dissolved table sugar and common salt is passed through organic ion exchange resins. The resulting water will be(a) At very high temperature(b) At very low temperature(c) At very high pressure(d) At very low pressure(f) D_2O is preferred to H_2O , as a moderator, in nuclear reactors because(a) D_2O slows down fast neutrons better(b) $Free from only Ca^{2+}$, Mg^{2+} ions(b) D_2O has high specific heat(c) $Free from HCO_3^-, SO_4^{2-}$ and CI^- ions only(d) None of these(d) None of these31.Which of the following can effectively remove all types of hardness of water(a) Not of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b) Washing soda(c) Slaked lime(d) None of these	15.	Hydrogen is evolved by the action of cold dil. HNO_3 on		•
(c) Cu (d) Al 29.A sample of water containing some dissolved table sugar and common salt is passed through organic ion exchange resins. The resulting water will be(a) At very high temperature(b) At very low temperature(c) At very high pressure(d) At very low pressure(c) At very high pressure(d) At very low pressure(e) Sweet(f) D_2O is preferred to H_2O , as a moderator, in nuclear reactors because(a) D_2O slows down fast neutrons better(b) D_2O has high specific heat(c) D_2O is cheaper(b) Free from only Ca^{2+} , Mg^{2+} ions(d) None of these31.Which of the following can effectively remove all types of hardness of water(a) None of these31.Which of the following can effectively remove all types of hardness of water(a) Soap(b) Washing soda(c) Slaked lime(d) None of these		[11T 1998]		
(c)(c)(c) M 16.Hydrogen can behave as a metal (a)At very low temperature (b)At very low temperature (c)At very low temperature (d)At very low temperature (d)Common salt is passed through organic ion exchange resins. The resulting water will be (a)17. D_2O is preferred to H_2O , as a moderator, in nuclear reactors because(b) D_2O is preferred to H_2O , as a moderator, in nuclear reactors because(c) $Salty$ (d)None of these17. D_2O slows down fast neutrons better (b) D_2O slows down fast neutrons better(b) $Free from only Ca^{2+}$, Mg^{2+} ions (c) $Re from only Ca^{2+}$, Mg^{2-} ions(c) D_2O is cheaper (d)None of these31.Which of the following can effectively remove all types of hardness of water18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b)Washing soda (c)Salt is passed through organic ion exchange resins. The resulting water will be (a)18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b)Washing soda (c)Salt is passed through organic ion exchange resins. The resulting water will be (a)18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b)Washing soda (c)Salt lime19.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b)Washing soda (c)(c)Salt lime				
16.Hydrogen can behave as a metalresulting water will be(a) At very high temperature(b) At very low temperature(c) At very high pressure(d) At very low pressure(c) At very high pressure(d) At very low pressure(e) Salty(f) None of these17. D_2O is preferred to H_2O , as a moderator, in nuclear reactors because30.Water obtained by purification with organic ion exchange resins is (a) Pure water(a) D_2O slows down fast neutrons better(b) $Free from only Ca^{2+}, Mg^{2+} ions(c) Free from HCO_3^-, SO_4^{2-} and Cl^- ions only(d) None of these(b) None of these31.Which of the following can effectively remove all types of hardnessof water18.Out of the two allotropic forms of dihydrogen, the form with lessermolecular energy is(b) Washing soda(c) Slaked lime$			29.	
(a) D_2O is preferred to H_2O , as a moderator, in nuclear reactors because (a) D_2O slows down fast neutrons better (b) D_2O has high specific heat (c) D_2O has high specific heat (d) None of these (e) D_2O is cheaper (f) D_2O is cheaper (g) D_2O is c	16.			
17. D_2O is preferred to H_2O , as a moderator, in nuclear reactors because30.Water obtained by purification with organic ion exchange resins is (a) D_2O slows down fast neutrons better (b) D_2O has high specific heat (c) D_2O is cheaper (d) None of these30.Water obtained by purification with organic ion exchange resins is (a) Pure water18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is30.Water obtained by purification with organic ion exchange resins is (a) Pure water18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b) H_2O is cheaper (c) H_2O is cheaper (d) None of theseWhich of the following can effectively remove all types of hardness of water18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b) H_2O is cheaper (d) None of these(b) H_2O is cheaper (d) None of these18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(b) H_2O is cheaper (d) None of these(c) H_2O is cheaper (d) None of these				
D_2O is preferred to H_2O , so it modelated, in indecation factors (a) D_2O slows down fast neutrons better (b) D_2O has high specific heat (c) D_2O is cheaper (d) None of these				
(b) D_2O has high specific heat (c) D_2O is cheaper (d) None of these 18. Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is (c) Free from HCO_3^- , SO_4^{2-} and Cl^- ions only (d) None of these 31. Which of the following can effectively remove all types of hardness of water (a) Soap (b) Washing soda (c) Slaked lime (d) None of these	17.		30.	
 (c) D₂O is cheaper (d) None of these (d) None of these (e) Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is (f) None of these (g) None of these (h) None of these 		(a) D_2O slows down fast neutrons better		(b) Free from only Ca^{2+} , Mg^{2+} ions
(c) D_2O is cheaper31.Which of the following can effectively remove all types of hardness of water18. Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is31.Which of the following can effectively remove all types of hardness of water(a) Soap(b) Washing soda (c) Slaked lime(d) None of these		(b) D_2O has high specific heat		
(d) None of theseof water18.Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is(a) Soap (b) Washing soda (c) Slaked lime(d) None of these		(c) D_2O is cheaper	- 11	
molecular energy is (c) Slaked lime (d) None of these		(d) None of these	JI.	
	18.	Out of the two allotropic forms of dihydrogen, the form with lesser		
(a) Urtho (b) Meta				(c) Slaked lime (d) None of these
		(a) Urtho (b) Meta		

- A commercial sample of hydrogen peroxide is labelled as 10 volume. 32. Its percentage strength is nearly [KCET 2005]
 - (a) 1% (b) 3%
 - (c) 10% (d) 90%

Assertion & Reason

For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- If both assertion and reason are true and the reason is the correct (a) explanation of the assertion.
- If both assertion and reason are true but reason is not the correct *(b)* explanation of the assertion. If assertion is true but reason is false.
- (c) (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.

1.	Assertion	:	Hydrogen combines with other elements by losing, gaining or sharing of electrons.
	Reason	:	Hydrogen forms electrovalent and covalent bonds with other elements.
2.	Assertion	:	Calgon is used for removing Ca^{2+} and Mg^{2+} ions from hard water.
	Reason	:	Calgon forms precipitates with Ca^{2+} and Mg^{2+} .
3.	Assertion	:	Decomposition of H_2O_2 is a disproportionation reaction.
	Reason	:	H_2O_2 molecule simultaneously undergoes oxidation and reduction.
4.	Assertion	:	$H_2 O_2$ has higher boiling point than water.
	Reason	:	$H_2 O_2$ has stronger dipole-dipole interactions than water.
5.	Assertion	:	H_2O_2 is not stored in glass bottles.
	Reason	:	Alkali oxides present in glass catalyse the decomposition of $H_2 {\cal O}_2$.
6.	Assertion	:	H_2O_2 reduces Cl_2 to HCl.
	Reason	:	H_2O_2 is called antichlor.
7.	Assertion	:	In acidic medium, H_2O_2 reacts with MnO_2 to
			give O_2 .
	Reason	:	H_2O_2 is a strong oxidising agent.
8.	Assertion	:	In alkaline solution, H_2O_2 reacts with potassium ferricyanide.
	Reason	:	H_2O_2 is a strong reducing agent.
9.	Assertion	:	Acidulated water is an example of hard water.
	Reason	:	In the presence of an acid, soap is converted into insoluble free fatty acids.
10.	Assertion	:	Hydrogen peroxide forms only one series of salts called peroxides.
	Reason	:	Hydrogen peroxide molecule has only one replaceable hydrogen atom.

1	а	2	d	3	а	4	а	5	d
6	d	7	b	8	а	9	c	10	a
11	C	12	a	13	c	14	b	15	d
16	а	17	d	18	d	19	C	20	d
21	b	22	b	23	C	24	C	25	d
26	b	27	C	28	а	29	b	30	a
31	C	32	d	33	d	34	d	35	C
36	d	37	а	38	а	39	C	40	c
41	C	42	d	43	d	44	b	45	c
46	b	47	a	48	а	49	C	50	d
51	C	52	d	53	b	54	d	55	C
56	b	57	b	58	b	59	d	60	a
61	b	62	а	63	b	64	b	65	b
66	C	67	C	68	C	69	C	70	a
71	d	72	C	73	а	74	C	75	d
76	C	77	d	78	b	79	а	80	a
81	С	82	C	83	b	84	С		

Hydrogen

Water or hydride of oxygen

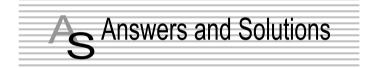
1	b	2	b	3	c	4	b	5	с
6	a	7	b	8	b	9	C	10	b
11	a	12	a	13	d	14	d	15	d
16	C	17	b	18	b	19	C	20	d
21	C	22	a	23	a	24	C	25	C
26	C	27	d	28	а	29	е	30	C
31	C	32	C	33	C	34	d	35	d
36	а	37	а	38	C	39	C	40	d
41	C	42	d	43	C	44	b	45	а
46.	b								

Hydrogen peroxide

1	В	2	d	3	а	4	b	5	c
6	C	7	d	8	C	9	b	10	b
11	а	12	d	13	а	14	b	15	а
16	C	17	а	18	b	19	C	20	C
21	a	22	a	23	a	24	d	25	d
26	d	27	d	28	а	29	а	30	C
31	C	32	C	33	d	34	а	35	а
36	C	37	а	38	а	39	е	40	е

Answers

Get More Learning Materials Here :


🕀 www.studentbro.in

41	b								
		Cri	tical	Think	king (Ques	tions		
	_					_	_	_	_

1	C	2	d	3	C	4	d	5	acd
6	cd	7	abd	8	b	9	bd	10	cd
11	d	12	d	13	а	14	b	15	b
16	C	17	d	18	C	19	С	20	a
21	C	22	C	23	C	24	b	25	b
26	b	27	b	28	b	29	b	30	d
31	а	32	b						

Assertion & Reason

1	а	2	d	3	a	4	C	5	a
						9			

Hydrogen and its preparation

1. (a) $NaH + H_2O \rightarrow NaOH + H_2 \uparrow$

2. (d) $KH + H_2O \rightarrow KOH + H_2 \uparrow$

- 3. (a) Hydrogen burns in air with a light bluish flame.
- (a) Ortho and para hydrogen show different spin in a hydrogen molecule it does not show hydrogen isotopes.
- (d) Boiling point of liquid hydrogen is lowest of given substances so it is distilled first.
- 6. (d) $Mg + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2 \uparrow$
- 8. (a) $Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \uparrow$
- 10. (a) Ortho and para hydrogen differ in proton spin.
- **11.** (c) $Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \uparrow$

12. (a)
$$Mg + 2HCl \rightarrow MgCl_2 + H_2 \uparrow$$

- 13. (c) Order of adsorption of H₂ (occlusion) is Colloidal Palladium > Palladium > Platinum > Gold > Nickel
 14. (b) Number of neutrons = Mass number - Atomic number
 - = 3 1 = 2
- **17.** (d) Because *Al* has more affinity for oxygen than hydrogen.
- (d) Helium is a noble gas and does not combine with hydrogen.
 (c) Occlusion is the phenomenon of adsorption of hydrogen by metal.
- **20.** (d) CaH_2 is known as hydrolith.
- **21.** (b) Zn displaces hydrogen from the boiling solution of NaOH. $Zn + 2NaOH + 2H_2O \rightarrow Na_2[Zn(OH)_4] + H_2 \uparrow$
- 22. (b) Occluded hydrogen is the hydrogen absorbed by the metal.
- 23. (c) Because dihydrogen is less reactive.

- **24.** (c) ${}_{1}H^{3}$ has 3 nucleons (1 proton + 2 neutrons) and one electron so sum of these is 3 + 1 = 4.
- **25.** (d) ${}_{1}^{2}D_{2} = (2 \text{ neutrons} + 2 \text{ protons}) = 4 \text{ nucleons.}$
- **26.** (b) Solubility of ionic compound is lower in heavy water.
- $\label{eq:constraint} \textbf{27.} \qquad (c) \quad \text{These allotropic forms have similar chemical properties.}$
- **28.** (a) It is 0.4 *kJ*/*mol*.

29.

- (b) $H^- = 1s^2$; $He = 1s^2$
- **30.** (a) A fusion reaction is difficult to occur because positively charged nuclei repel each-other. At very high temperatures of the order of 10^6 to $10^7 K$, the nuclei may have sufficient energy to overcome the repulsive forces and fuse. It is for this reason, fusion reactions are also called thermonuclear reactions. Hence, hydrogen can be fused to form helium at high temperature and high pressure.
- **31.** (c) It is Bosch process.
- **32.** (d) Gold is a noble metal.
- **33.** (d) $Ca + H_2 \rightarrow CaH_2 \xrightarrow{2H_2O} Ca(OH)_2 + 2H_2$
- **34.** (d) Hydrogen can loose one electron (*e.g. HF*). It can gain one electron (*e.g. NaH*), Hydrogen can also share one electron (*e.g.* H H).
- **35.** (c) Hydrogen is a much lighter element than alkali metals or halogen.
- **36.** (d) Heavy water is not unstable.

37. (a)
$$M^+H^- \rightarrow M^+ + H^-_{\text{Hydride ion}}$$

$$H^- \rightarrow \frac{1}{2} H_2 + e^-$$
 (At anode)

- **38.** (a) F_2 has maximum tendency to react with hydrogen. the decreasing order of reactivity is $F_2 > Cl_2 > Br_2 > I_2$.
- **39.** (c) It acts both as a reducing agent and oxidising agent.

$$40. (c) H \to H^+ + e^-$$

 $H + e^- \rightarrow H^-$

41.

CLICK HERE

- (c) IE of *H* is 1312 *kJ*/*mole*.
 IE of *Cl* is 1255 *kJ*/*mole*.
- 42. (d) Alkali metals are good reducing agents because of low ionization energy and hydrogen also shows same character.
- **43.** (d) Position of hydrogen in the periodic table is not fully justified.
- **44.** (b) $H_2 + Cl_2 \rightarrow H^+ Cl^-$. In this hydrogen has positive oxidation state.

🕀 www.studentbro.in

45. (c) For example HF, NaH, H_2

46. (b)
$$2Na + H_2 \rightarrow 2Na^+H^-$$

Hydrogen has $-ve$ (-1) oxidation state.
47. (a) $NaH \Rightarrow Na^+ + H^-$
At anode : $H^- \rightarrow H + e^-$
 $H + H \rightarrow H_2$
48. (a) For example HCl is a protonic acid
 $HCl + H_2O \Rightarrow [H_3O]^+ + Cl^-$

- **49.** (c) Hydrogen resembles both alkali metals and halogens.
- (d) Chlorine has lone pair which it can donate to form co-ordinate bond while hydrogen cannot.

Actually these exist in the ratio. Protium : Deuterium : Tritium $1 : 1.56 \times 10^{-2} : 1 \times 10^{-17}$

52. (d)
$$SO_3 + D_2O \rightarrow D_2SO_4$$
 dideutero-sulphuric acid.

53. (b)
$$H^1H^1, H^1H^2, H^2H^2, H^3H^3, H^2H^3$$

54. (d)
$$Ca H_2^{+2}$$
 i.e., $2 + 2x = 0$, $x = -1$
 $2x = -2$ or $x = \frac{-2}{2} = -1$

55. (c) Pure hydrogen is obtained by the electrolysis of $Ba(OH)_2$ solution in a *U*-tube using nickel electrode. The gas is liberated at the cathode and is passed over heated platinum gauze to remove oxygen if present as impurity.

56. (b)
$$\underbrace{CO + H_2}_{\text{water gas}} + H_2O \xrightarrow{\text{catalyst}} CO_2 + 2H_2$$

57. (b) Deuterium $\binom{2}{1}H$ and hydrogen $\binom{1}{1}H$ both have same atomic number but different mass number so they have similar chemical but different physical properties.

58. (b)
$${}_{1}^{3}H \rightarrow {}_{2}^{3}He + {}_{-1}^{0}e$$

51.

62.

(c)

59. (d)
$$V.oil + H_2 \xrightarrow{Ni} Fat$$

- **60.** (a) $2H \Rightarrow H_2$; $\Delta H = -104.5 \ kcal$
- $\textbf{61.} \qquad (b) \quad Lavoisier \ give \ the \ name \ hydrogen \ which \ means \ water \ maker.$

(a) For diatomic gases (*e.g.* H_2) $r = C_p / C_v = 1.40$ For monoatomic gases r = 1.66

For triatomic gases r = 1.33

63. (b) H_3 is also called Hyzone.

64. (b)
$$4LiH + AlCl_3 \xrightarrow{\text{Ether}} LiAlH_4 + 3LiCl$$

65. (b) Alkali metal hydrides react with water to give metal hydroxide and H_2 *e.g.*,

 $NaH + H_2O \rightarrow NaOH + H_2$

Alkali metal hydroxides are strongly basic in nature.

- $\textbf{66.} \qquad (c) \quad \text{lonic hydrides are good reducing agents.}$
- $\textbf{68.} \qquad (c) \quad \text{Systematic name of water is oxidane.}$
- **69.** (c) BeH_2 and MgH_2 have significant covalent character.
- **70.** (a) Limiting composition of f block hydrides are MH_2 and $MH_3 \; .$
- **71.** (d) H_2 does not react with Au, Cu or Ni with Ca it gives CaH_2 . $Ca + H_2 \rightarrow CaH_2$
- **72.** (c) $Ca(OH)_2$ is used for the softening of temporary hard water.

$$Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$$

cloudiness

73. (a)
$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$
 \therefore Ratio of volumes of H_2 evolved is 1 : 1.

- (c) Anhydrous $CaCl_2$ is used for fast drying of neutral gases.
- **75.** (d) Hydrogen is the lightest gas.

74.

11.

12.

CLICK HERE

- **76.** (c) An atom of tritium contains 1 proton, 1 electron and 2 neutrons.
- (d) Hydrogen is a non-metal while all other members of group 1 (alkali metals) are metals.

78. (b)
$$H^{-}(aq) + H_2O(l) \rightarrow OH^{-}(aq) + H_2(g)$$

base 1 acid 2 base 2 acid 1

79. (a)
$$H + e^{-} \rightarrow H^{-}_{1s^{2} \text{ or } [He]^{2}}$$

 $F + e^{-}_{[He]^{2} 2s^{2} 2p^{5}} \rightarrow F^{-}_{[He]^{2} 2s^{2} 2p^{6} \text{ or } [Ne]^{10}}$

- **80.** (a) Hydrogen from bonds in +1 and -1 oxidation state.
- **81.** (c) Mercury (*Hg*) will not displace hydrogen.
- 83. (b) Hydrogen forms maximum number of compounds in chemistry comparison than carbon.

84. (c)
$$Zn + H_2O \rightarrow ZnO + H_2$$

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

 $Zn + 2H_2SO_4 \rightarrow ZnSO_4 + SO_2 + 2H_2O$.

Water or hydride of oxygen

4. (b)
$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 \downarrow + 4H_2O$$

- 5. (c) $D_2 O$ in which $D = {}_1 H^2$
- **7.** (b) HCO_3^- is main reason of temporary hardness of water.

$$Ca(HCO_3)_2 \xrightarrow{\text{Boil}} CaCO_3 + H_2O + CO_2$$

(insoluble)

9. (c)
$$Na_2Al_2Si_2O_8 .xH_2O + Ca^{+2} \rightarrow$$

Zeolite

 $CaAl_2Si_2O_8.xH_2O + 2Na^+$

🕀 www.studentbro.in

- 10. (b) Water has high dielectric constant *i.e.*, 82, high liquid range and can dissolve maximum number of compounds. That is why it is used as universal solvent.
 - (a) Heavy water *i.e.*, D_2O slows down the speed of neutrons in nuclear reactors.
 - (a) Chlorides and sulphates of Mg and Ca produces permanent hardness and bicarbonates of Mg and Ca produces temporary hardness.
- (d) Permanent hardness cannot be removed by boiling of water but temporary hardness can be removed.

14. (d) The density of water is $1 g cm^{-3}$ at $4^{\circ}C$

so

molarity =
$$\frac{1000}{18} = 55.5 M$$
.

15. (d) Water containing Ca^{+2} , Mg^{+2} and $H^+(>10^{-7}m)$ is a hard water.

Get More Learning Materials Here :

 $H^+(aq) + CH_3COONa(aq) \Rightarrow CH_3COOH(s) + Na^+(aq)$

- 16. (c) Heavy water is used as a moderator to slow down the speed of fast moving neutrons and as well as a coolant.
- 17. (b) Heavy water freezes at a slightly higher temperature than water.
- **18.** (b) pH of heavy water is slightly more than seven.
- 19. (c) D_2O actually has higher freezing point (3.8°C) than water H_2O (0°C).
- **20.** (d) Colourless anhydrous $CuSO_4$ becomes blue on reaction with water.
- 21. (c) Due to plumbosolvancy, lead dissolves in water to a small extent to form soluble hydroxide which is poisonous so lead pipe is not used for carrying drinking water.

$$Ca(OH)_2 + Ca(HCO_3)_2 \rightarrow 2CaCO_3 \downarrow + 2H_2O_3$$

From hard water

- **23.** (a) In cation exchange resin Mg^{+2} and Ca^{+2} (cations) are replaced by Na^+ ions.
- 24. (c) Washing soda removes both the temporary and permanent hardness by converting soluble calcium and magnesium compounds into insoluble carbonates.

 $\begin{aligned} CaCl_2 + Na_2CO_3 &\rightarrow CaCO_3 + 2NaCl\\ CaSO_4 + Na_2CO_3 &\rightarrow CaCO_3 + Na_2SO_4\\ Ca(HCO_3)_2 + Na_2CO_3 &\rightarrow CaCO_3 + 2NaHCO_3. \end{aligned}$

25. (c) It is
$$Na_2Al_2Si_2O_8.xH_2O$$

- **26.** (c) ${}_{1}H_{2}^{3}O = 16 + 2 \times 3 = 22 amu$
- **27.** (d) $H_2 O(H = {}_1 H^2)$

 $16 + 2 \times 2 = 20 amu$

30. (c)
$$K_2 SO_4 . Al_2 (SO_4)_3 . 24H_2O$$

Potash alum is generally used for purifying water.

- **31.** (c) Copper will not reduce H_2O to H_2 because of low reducing power of copper comparison than hydrogen.
- **32.** (c) Heavy water is formed by the combination of heavier isotope $({}_{1}H^{2} \text{ or } D)$ with oxygen.

$$2D_2 + O_2 \rightarrow \frac{2D_2O}{\text{Heavy wate}}$$

- (c) Water molecule associate due to inter molecular hydrogen bonding.
- **34.** (d) Heavy water is $D_2O(1-c)$

Temporary hard water contains bicarbonates of Ca^{2+} and $Mg^{2+}(2-a)$

Soft water may have no foreign ions (3-b).

Permanent hard water contains sulphates and chlorides of Ca^{+2} and $Mg^{2+}(4-d)$

- **35.** (d) The H O H angle in water molecule is about 105° (due to two lone pair of electron).
- **36.** (a) Two ice cubes when pressed over each other unite due to hydrogen bond formation.

37. (a) $CaC_2 + 2D_2O \rightarrow C_2D_2 + Ca(OD)_2$

- **38.** (c) Pure water can be obtained from sea water by reverse osmosis.
- **39.** (c) Action of water on dil. Mineral acids (HCl, H_2SO_4) can give dihydrogen.
- **40.** (d) Iron (*Fe*) does not react with cold water to give H_2 . However, iron reacts with steam to give H_2 .
- **41.** (c) *pH* of neutral water at room temperature is seven.
- 43. (c) The low density of ice compared to water is due to hydrogen bonding interactions.
- **44.** (b) Silicon tetra fluoride on hydrolysis furnish ortho silicic acid and hydrogen silicofluoride.

$$\begin{array}{ccc} 3SiF_4 &+ 4H_2O \longrightarrow H_2SiO_4 + & 2H_2SiF_4 \\ (Silicon tetra & (Water) & (Ortho & (Hydrogen Silico \\ Fluoride) & Silicic acid) & Fluoride) \end{array}$$

- **45.** (a) The triple point of any substance is that temperature and pressure at which the material can exist in all three phases (Solid, liquid and gas) in equilibrium specifically the triple point of water is 273.16K at 611.2 Pa.
- **46.** (b) Hardness of water is due to the presence of bicarbonates, chlorides and sulphates of Ca and Mg on it. These Ca^{2+} and Mg^{2+} ions react with the anions of fatty acids present in soaps to form curdy white precipitates. As a result, hard water does not produce lather with soap immediately.

Hydrogen peroxide

(b)
$$Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$$

1.

3.

5.

6.

7.

9.

In this reaction H_2O_2 works as reducing agent

2. (d) $[H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2] \times 2$ $2H_2O_2 \rightarrow 2H_2O + O_2$ 22.4 *litre* at N.T.P. ≈ 22.4 *litre* O_2 at N.T.P. obtained by 68 gm of H_2O_2 \therefore 10 *litre* O_2 at N.T.P. obtained by

$$\frac{68}{22.4}$$
 × 10 = 30.35 gm / litre

 \therefore 1000 ml O₂ at N.T.P. obtained by = 30.35 gm

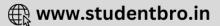
 \therefore 100 *ml* O_2 at N.T.P. obtained by

$$=\frac{30.35}{1000}\times100=3.035\%$$

(a)
$$H_2SO_4 + BaO_2 \rightarrow BaSO_4 + H_2O_2$$

(c)
$$BaO_2 + 2HCl \rightarrow BaCl_2 + H_2O_2$$

(c)
$$Na_2O_2 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O_2$$


(d)
$$PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_2$$

8. (c)
$$H_2S + H_2O_2 \rightarrow S_0 + 2H_2O_0$$

In this reaction H_2O_2 shows oxidising nature.

(b)
$$H_2O_2 + Cl_2 \rightarrow 2HCl + O_2$$

13. (a) Volume strength $= 5.6 \times \text{Normality}$

 $= 5.6 \times 1.5 = 8.4$ *litre*

(b) Quantity of $H_2O_2 = 15 ml$ and volume of $H_2O_2 = 20$ 14.

> We know that 20 volume of H_2O_2 means 1 litre of this solution will give 20 litre of oxygen at N.T.P.

Since, oxygen liberated from 1000 *ml* (1 *litre*) of $H_2O_2 = 20 \, litre$, therefore oxygen liberate from 15 ml of

$$H_2O_2 = \frac{20}{1000} \times 15 = 0.3 \ litre = 300 \ ml$$

(a) E.W. of $H_2O_2 = 17$ 15.

$$N = \frac{30.36}{17} = 1.78 N$$

Volume strength = $5.6 \times Normality$

$$= 5.6 \times 1.78 = 10 \, litre$$

- (a) Equivalent weight of H_2O_2 is 17. 17.
- (b) \therefore 22.4 *litre* O_2 at N.T.P. obtained by 68 gm of H_2O_2 18.

$$\therefore$$
 1 *litre* O_2 at N.T.P. obtained by $\frac{68}{22.4}$ gm of H_2O_2

-0

 \therefore 20 *litre* O_2 at N.T.P. obtained by

$$\frac{68}{22.4} \times 20 \text{ gm of } H_2 O_2 = 60.71 \text{ gm of } H_2 O_2$$

- \therefore 1000 ml O_2 at N.T.P. obtained by = 60.71 gm of H_2O_2
- *.*:. 100 ml O_2 at N.T.P. obtained by $=\frac{60.71}{1000} \times 100 = 6.71\%$
- (c) Electrolysis of 50% sulphuric acid gives per disulphuric acid 19. $(H_2S_2O_8)$ which on distillation yields 30% solution of hydrogen peroxide.
- (c) Due to O O bond. 20.
- (a) 10 volume of H_2O_2 means 10 ml of O_2 is obtained from 1 21. ml of H_2O_2 .
- (a) Glycerol, phosphoric acid or acetanilide is added to H_2O_2 to 22. check its decomposition.
- (a) H_2O_2 reduces O_3 to O_2 23. $O_3 + H_2O_2 \rightarrow H_2O + 2O_2$
- (d) Fe^{+3} cannot be reduced by H_2O_2 while all other get 24 reduced.
- 25. (d) Hydrogen peroxide does not show basic properties.
- 26. (d) Although H_2O_2 is a better polar solvent than H_2O . However it cannot be used as such because of the strong autooxidation ability.
- H_2O_2 is used as an oxidant for rocket fuel and has 90% 27. (d) concentration to be used in rockets.

 $H_2O_2 \rightarrow H_2O + [O]$ weak acid 28. (a)

Lattice energy of all metal nitrate are less than that of their 29. (a) solvation energy so nitrates of metals soluble in water.

(c) H_2O_2 is unstable liquid and decomposes into water and 31. oxygen either on standing or on heating.

32. (c)
$$\begin{array}{c} CH_2 \\ \parallel \\ CH_2 \end{array} + H_2O_2 \rightarrow \begin{array}{c} CH_2OH \\ \parallel \\ CH_2OH \end{array}$$

- H_2O_2 show all these properties. 33. (d)
- (a) As H_2O_2 is loosing electrons so it is acting as reducing 34. agent.
- (c) This is due to the formation of CrO_5 . 36.

$$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \rightarrow K_2SO_4 + 2CrO_5 + 5H_2O_{\text{Blue}}$$

- (a) K of $H_2O_2 = 1.55 \times 10^{-12}$ 37.
- (a) In the following reaction H_2O_2 acts as a reducing agent. 38.

$$PbO_2(s) + H_2O_2(aq) \rightarrow PbO(s) + H_2O(l) + O_2(g)$$

 H_2O_2 acts as an oxidising agent in acidic and alkaline 39. (e) medium. 97°

0. (e)
$$O - \frac{1.48 \text{\AA}}{97^{\circ}}$$

 $H = 97^{\circ}$

68

4

3.

4.

6.

$$2H_2O_2 \longrightarrow 2H_2O + O_2$$

$$2 \times 34g \qquad 22400 \, ml$$

$$\therefore 2 \times 34 \, gm = 68 \, gm \text{ of } H_2O_2 \text{ liberates}$$

$$22400 \, ml O_2 \text{ at STP}$$

$$\therefore .68 \, gm \text{ of } H_2O_2 \text{ liberates}$$

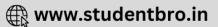
$$= \frac{.68 \times 22400}{.68 \times 22400} = 224 \, ml$$

Critical Thinking Questions

- Polyphosphates (sodium hexametaphosphates, sodium (c) tripolyphosphate or STPP) from soluble complexes with Ca^{+2} , Mg^{+2} present in hard water.
- 2. (d) Critical temperature of water is more than O_2 due to its dipole moment (Dipole moment of water = 1.84 D; Dipole moment of $O_2 = \text{zero } D$).

(c)
$$Ca_3P_2 + 6H_2O \rightarrow 2PH_3 + 3Ca(OH)_2$$

(Cal. phosphide) phosphene
I mole (2 moles)


(d) Zeolite when treated with hard water exchange Cu^{+2} and Mg^{+2} ions (present in hard water) with Na^+ ions.

(c,d)
$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \uparrow$$

$$LiH + H_2O \rightarrow LiOH + H_2 \uparrow$$

(a,b,d) Water containing any cation other than NH_4^+ and alkali 7. metal is a hard water.

Get More Learning Materials Here :

- 8. (b) Reaction of $NaBH_4$ with cold water is very slow. All other statements except (b) are correct.
- **9.** (b,d) $CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2 \uparrow$

 $Ca+2H_2O \rightarrow Ca(OH)_2+H_2 \uparrow$

- (c,d) Ice is a poor conductor of heat (a good thermal insulator) and its density is less than water.
- **11.** (d) H_2 will not reduce heated Al_2O_3 .
- 12. (d) MnO_2 , PbO_2 and BaO will not give H_2O_2 with $HCl.MnO_2$ and PbO_2 will give Cl_2 and BaO will react with HCl to give $BaCl_2$ and water.
- **13.** (a) *Cu* and dil. *HCl* will not produce H_2 .
- 14. (b) Strength = Normality × Eq. mass = 1.5×17 (eq. mass of H_2O_2) = $25.5 \ gL^{-1}$
- 15. (b) $Mn + 2HNO_3(dil) \rightarrow Mn(NO_3)_2 + H_2$
- 16. (c) Hydrogen behaves as a metal at very high pressure.
- 17. (d) H_2O absorbs neutrons more than D_2O and this decreases the number of neutrons for the fission process.
- **18.** (c) The para form of H_2 has lesser energy than the ortho form.
- 19. (c) Fire due to action of water on saline hydrides cannot be extinguished with water or CO_2 . These hydrides can reduce CO_2 at high temperature to produce O_2 .
- **21.** (c) $Mg(OH)_2$ is less soluble than $MgCO_3$. On boiling temporary hard water containing Mg^{+2} ions, the ppt. obtained is of $Mg(OH)_2$ are not that of $MgCO_3$.
- 22. (c) $Ca(OH)_2$ removes the permanent hardness due to Mg^{2+} ion, but it produces Ca^{2+} ions which are removed by Na_2CO_3 .

 $Mg^{2+} + Ca(OH)_2 \rightarrow Mg(OH)_2 \downarrow + Ca^{2+}$

 $Ca^{2+} + Na_2CO_3 \rightarrow CaCO_3 \downarrow +2Na^+$

 $Ca(OH)_2 \ \, {\rm or} \ \, Na_2CO_3$ alone cannot remove the permanent hardness.

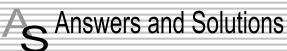
25. (b)
$$2HCOONa(s) \xrightarrow{\Delta} H_2(g) \uparrow + | (s) COONa (s) \xrightarrow{COONa} Sod. formate$$

- **26.** (b) Presence of CO_3^{2-} and SO_4^{2-} ions in water reduced the tendency of dissolution of *Pb* in water as $Pb(OH)_2$.
- 27. (b) NaCl does not make water hard.
- **28.** (b) Solubility of $CaSO_4$ in water decreases with increase in temperature.
- 29. (b) Organic ion exchange resins can remove only ionic impurities.
- 30. (d) Water obtained from organic ion-exchange resins is free from all ionic impurities.
- **31.** (a) Soap can remove all types of hardness of water as it converts the hardness producing cations into insoluble ppt.

32. (b) 10 volume solution of H_2O_2 is 3.035% solution i.e., 3.035 g of H_2O_2 is present in 100ml of the solution.

Assertion & Reason

2.	(d)	Both assertion (A) and reason (R) are not true.
		Correct Assertion : Calgon mask the properties of Ca^{2+} and Mg^{2+} ions present in water without removing them as ppt.
		Correct Reason : Calgon forms soluble complexes with Ca^{2+}
		and Mg^{2+} in which properties of these ions are masked.
3.	(a)	Both assertion (A) and reason (R) are true and R is the correct explanation of A .
		Correct Reason : $H_2 {\cal O}_2$ is a strong reducing agent.
4.	(c)	Assertion (A) is correct but reason (R) is not the correct explanation of A .
10.	(d)	Both assertion (A) and reason (R) are not true.
		Correct Assertion : Hydrogen peroxide forms two series of salts called hydroperoxides and peroxides.
		Correct Reason · Hydrogen perovide molecule has two


Correct Reason : Hydrogen peroxide molecule has two replaceable hydrogen atoms.

Hydrogen and Its compounds

ET Self Evaluation Test -17

	Temperature of maximum density in H_2O and D_2O respectively		(a) Ag_2O
	are		(b) Fe^{3+}
	(a) 277.15 K, 284.75 K		(c) Acidified $KMnO_4$
	(b) 273.15 <i>K</i> , 277.15 <i>K</i>		(d) Acidified $K_2 C r_2 O_7$
	(c) 277.15 K, 285.75 K		
	(d) 284.75 K, 277.15 K	9.	Hydrogen can be prepared by the action of dil. H_2SO_4 on
•	Non-metallic oxides dissolves in water to form		(a) Copper (b) Iron
	(a) Acidic solution		(c) Lead (d) Mercury
	(b) Alkaline solution	10.	The element whose hydride contains maximum number of hydroge per atom of the element is
	(c) Neutral solution		(a) Na (b) O
	(d) None of these		
•	Ordinary water is not used as a moderator in nuclear reactors because	11.	Indicator type silica gel used as a dehumidifier contains
	(a) It cannot slow down fast moving neutrons		(a) Cu^{2+} ions (b) Ni^{2+} ions
	(b) It cannot remove the heat from the reactor core		(c) Co^{2+} ions (d) Fe^{2+} ions
	(c) It absorbs the fast moving neutrons	12.	To an aqueous solution of $AgNO_3$ some $NaOH(aq)$ is added, the
	(d) Of its corrosive action on the metallic parts of the nuclear reactor		a brown ppt. is obtained. To this H_2O_2 is added dropwise. The ppt. turns black with the evolution of O_2 . The black ppt. is
•	Brackish water mostly contains		
	(a) Calcium chloride (b) Barium sulphate		(a) Ag_2O (b) Ag_2O_2
	(c) Sodium chloride (d) Mineral acids	10	(c) AgOH (d) None of these
	$TiH_{1.73}$ is an example of	13.	Atomic hydrogen reacts with oxygen to give (a) Almost pure water
	(a) lonic hydride		(b) Almost pure hydrogen peroxide
	(b) Covalent hydride		(c) A mixture of water and hydrogen peroxide
			(d) None of these
	(c) Metallic hydride (d) Polymeric hydride	14.	Which of the following cannot be used for the preparation of ${\cal H}_2^{}$
	The volume strength of perhydrol is		(a) $Zn + HCl(dil) \rightarrow$
•	(a) 20 (b) 30		(b) $NaH + H_2O \rightarrow$
	(a) 20 (b) 50 (c) 100 (d) 10		(c) $Zn + HNO_3(dil) \rightarrow$
	The solubility of an ionic compound is compared in heavy and		
	simple water. It is		(d) $HCOONa \xrightarrow{\Delta}$
	(a) Higher in heavy water	15.	The process used for the removal hardness of water is
	(b) Lower in heavy water		(a) Calgon (b) Baeyer
	(c) Same in heavy water and simple water		(c) Serpeck (d) Hoope
	(d) Lower in simple water		
	Which of the following cannot be reduced by H_2O_2		

(SET -17)

🕀 www.studentbro.in

Get More Learning Materials Here :

- 1. (a) Temperature of maximum density of H_2O is 277.15 K. Temperature of maximum density of D_2O is 284.75 K.
- 2. (a) Non metallic oxides in water are form acidic solutions *e.g.* $P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$ phosphoric acid
- (c) Ordinary water absorbs fast moving neutrons, thus stopping the process of nuclear fission.
- 4. (c) Brackish water mostly contains sodium chloride.
- 5. (c) It is a metallic hydride.
- 6. (c) The volume strength of perhydral is 100 perhydral is 30% H_2O_2

10 vol. $H_2O_2 \equiv 3\% H_2O_2$

 \therefore 30% of $H_2O_2 \equiv 100$ vol. H_2O_2

- (b) The solubility of an ionic compound is more in simple water and less in heavy water.
- **8.** (b) H_2O_2 cannot reduce Fe^{3+} . All other compounds are reduced by H_2O_2 .
- 9. (b) Hydrogen cannot be prepared by the action of dil. H₂SO₄ on copper or mercury as these two metals cannot displace hydrogen from acids. Action of dil. H₂SO₄ are stops after sometimes due to the formation of insoluble PbSO₄. Only, iron reacts rapidly with dil. H₂SO₄ to give H₂.
- 10. (d) Hydride of $Si(SiH_4)$ contains more hydrogen atoms than hydrides of Na(NaH), $O(H_2O)$, $B(BH_3)$.
- **11.** (c) Indicator type of gel used as a dehumidifier contains CO^{2+} ions, when dry it is blue in colour and on absorbing moisture it becomes pink.
- 12. (d) $2AgNO_3(aq) + 2NaOH(aq) \rightarrow$

 $Ag_2O(s)+H_2O(l)+2NaNO_3(aq)$ Brown ppt. $Ag_2O(s) + H_2O_2(aq) \rightarrow H_2O(l) + O_2(g) + 2Ag(s)$ Black not

The finely divided Ag is black in colour.

13. (b) Atomic hydrogen reacts with oxygen to give almost pure hydrogen peroxide.

 $2[H] + O_2 \rightarrow H_2O_2$

14. (c)
$$Zn + 2HCl(dil) \rightarrow ZnCl_2 + H_2$$

$$NaH + H_2O \rightarrow NaOH + H_2$$

15.

$$2HCOONa \xrightarrow{\Lambda} Na_2C_2O_4 + H_2$$

sodium oxalate

 $4Zn + 10HNO_3dil \rightarrow 4Zn(NO_3)_2 + N_2O + 5H_2O$

(a) Calgon process is used for the removal of hardness of water.

